April 22, 2014 Volume 10 Issue 16

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Tbot Linear Robot systems with fixed motor mounting are perfect for pick and place

Macron Dynamics' belt-driven X/Z T-Bot systems (TBG line) are perfect for pick-and-place processes. The simple design, where a single belt drives both axes, means there is no need for costly cable carriers. This type of motion can be used for anything pick-and-place oriented, and the extruded construction means it can scale to virtually any application. The architecture of the line allows for smaller travel heights for the Z axis, providing a more compact structure that is easier to integrate into existing designs. Models available to handle max loads from 10 to 100 lb.
Learn more.


Get your cobots on track ... literally

Thomson Industries has released what it is calling "the first-ever true collaborative extension of cobots." Adding a horizontal operating range up to 10 m, the MovoTrak CTU (cobot transfer unit) 7th axis sets itself apart with collision detection that stops the cobot when it encounters an obstacle, facilitating collaboration and increasing productivity. An industrial robot transfer unit (RTU) has also launched, which can be easily integrated with a user's preferred motor and drive. Compatible with even the largest cobots, such as the UR20 and UR30.
Learn more.


Versatile linear actuator with high load capacity

The GL-N is a versatile actuator from THK that boasts a durable design and high movement load capacity thanks to dual linear guide rails. It is ideal for automation and packaging applications, delivering high precision, durability, and efficiency. GL-N-B features a lightweight, high-rigidity aluminum base with Caged Ball LM guides. GL-N-BS adds a QZ Lubricator for the ball screw for long-term, maintenance-free operation.
Learn more.


Next-gen motor for pump and fan applications

The next evolution of the award-winning Aircore EC motor from Infinitum is a high-efficiency system designed to power commercial and industrial applications such as HVAC fans, pumps, and data centers with less energy consumption, reduced emissions, and reduced waste. It features an integrated variable frequency drive and delivers upward of 93% system efficiency, as well as class-leading power and torque density in a low-footprint package that is 20% lighter than the previous version. Four sizes available.
Learn more.


What is a low-waving linear motion guide?

If you are having a problem with your linear guides not always staying perfectly straight during use, it may be due to a phenomenon called waving -- a problem that is particularly critical in high-precision markets such as semiconductor and LCD equipment-related applications or machine tools. Thankfully, THK has an answer.
Read the full article.


OnRobot Sander: Ultimate solution for precision finishing tasks

Sanding is now more versatile and precise. Save time and enhance efficiency while maintaining consistent quality. With easy integration, remote monitoring, and dust-free operation, OnRobot Sander is a valuable addition to any workflow. This tool offers precise control over sanding parameters and is suitable for various materials, making it a must-have for professionals in the finishing industry.
Learn how to build your sanding application.
Learn more about OnRobot Sander.


Drive gearboxes for mobile robots

Different automated guided vehicles (AGVs) and autonomous mobile robots (AMRs) can require different types of wheel drives. GAM has all your needs covered from standard GML inline planetary gearboxes to integrated strain wave (harmonic) robotic gearboxes to modified and fully custom solutions. Check out all the offerings.
Learn more.


Universal Robots unveils cobot AI Accelerator

Universal Robots' new UR AI Accelerator is a ready-to-use hardware and software toolkit created to further enable the development of AI-powered cobot applications. Designed for commercial and research applications, the UR AI Accelerator provides developers with an extensible platform to build applications, accelerate research, and reduce time to market of AI products -- ready to use straight out of the box.
Learn more.


Z-Tip-Tilt nanopositioning stage: High-speed ultra precision

PI offers an ultra-low-profile Z-Tip-Tilt stage designed for demanding alignment applications in optics, semicon-ductors, precision assembly, and photonics. Based on air bearings and linear motors, the stage is wear-free, maintenance-free, and cleanroom compatible. High speed is ensured by 3-phase linear motors, while high resolution and precision are provided by closed-loop operation with linear encoders with 1-nm resolution. Comes in 5- and 6-axis combinations.
Learn more.


Curtiss-Wright unveils new Exlar GTF food-grade actuator

Curtiss-Wright's Actuation Division has expanded its popular Exlar electric actuator product offerings to include hygienic actuators with FDA-approved materials and finishes. Designed for automation systems in the food and beverage, packaging, and pharmaceutical industries, the GTF with inverted roller screw technology helps customers achieve hygienic certifications more economically. Ideal for builders of hygienic machinery to easily incorporate into their designs.
Learn more.


Robot has longest reach in Mitsubishi's low-cost series

The MELFA RV-12CRL vertically articulated robot has the longest reach of any robot in Mitsubishi Electric's low-cost robot series: 1,504 mm (59.2 in.). With a 12-kg (26.4-lb) payload capacity, this unit is an ideal candidate for machine tending, case packing, and pick-and-place applications. Built-in features provide enhanced safety, streamlined implementation, and an overall reduction in downtime. Features internal cables and air hoses for end-of-arm tooling.
Learn more.


Servomotors for food, beverage, pharma, more

Siemens' new stainless steel SIMOTICS S-1FS2 line of servomotors has been designed for the clean condition requirements of the food, beverage, sterile packaging, pharma, and other process industries. These motors are highly resistant to corrosion and acidic chemicals and are offered in a variety of power ratings, from 0.45 to 2 kW (0.60 to 2.68 hp) with torque from 3.1 to 14 Nm (2.28 to 10.32 ft-lb). Features include high dynamics due to low inherent inertia, high overload capacity for pick-and-place, and precise movement of heavy loads. Easy installation and cleaning. Compatible with the SINAMICS S210 drive system.
Learn more.


What is Sensorless Closed Loop? Precise motor control without an encoder

Matt Sherman, eMobility Sales and Application Engineer at KEB America, runs through different options to drive an AC motor, including one called "Sensorless Closed Loop" that does not require additional hardware such as encoder, resolver, or cables on the motor.
Read this informative KEB America blog.


All about magnetic rotary encoder

The precision and reliability offered by modern rotary encoders are essential in many product categories. These include robotics, machine tools, printing presses, motion control systems, medical equipment, aerospace, gaming and entertainment, and automotive. Learn all about magnetic rotary encoders -- and important developments in the technology's future.
Read the full Avnet article.


High-force actuator line expanded with new models

Tolomatic has introduced five new products in its RSX line of high-force actuators to meet a wider range of industrial applications. These five sizes expand the RSX's capabilities to include forces up to 66,000 lbf (294 kN). RSX actuators, which feature high-precision planetary roller or ball screws for longer life in harsh environments, enable the easy replacement of traditional hydraulics to eliminate leaks and improve system performance.
Learn more.


Navy's laser weapon is ready for summer deployment

By Eric Beidel

Navy engineers in Arlington, VA, are making final adjustments to a laser weapon prototype that will be the first of its kind to deploy aboard a ship late this summer.

The prototype, an improved version of the Laser Weapon System (LaWS), will be installed on USS Ponce for at-sea testing in the Persian Gulf, fulfilling plans announced by Chief of Naval Operations Adm. Jonathan Greenert last year at the 2013 Sea-Air-Space Expo.

"This is a revolutionary capability," said Chief of Naval Research Rear Adm. Matthew Klunder. "It's absolutely critical that we get this out to sea with our sailors for these trials, because this very affordable technology is going to change the way we fight and save lives."

Navy leaders have made directed-energy weapons a top priority to counter what they call asymmetric threats, including unmanned and light aircraft and small attack boats that could be used to deny U.S. forces access to certain areas. High-energy lasers offer an affordable and safe way to target these threats at the speed of light with extreme precision and an unlimited magazine, experts say.

"Our nation's adversaries are pursuing a variety of ways to try and restrict our freedom to operate," Klunder said. "Spending about $1 per shot of a directed-energy source that never runs out gives us an alternative to firing costly munitions at inexpensive threats."

Klunder leads the Office of Naval Research (ONR), which has worked with the Naval Sea Systems Command, Naval Research Laboratory, Naval Surface Warfare Center Dahlgren Division, and others to make powerful directed-energy weapons a reality.

The Navy already has demonstrated the effectiveness of lasers in a variety of maritime settings. In a 2011 demonstration, a laser was used to defeat multiple small boat threats from a destroyer. In 2012, LaWS downed several unmanned aircraft, including one captured on the video below.

Over the past several months, working under the ONR Quick Reaction Capability program, a team of Navy engineers and scientists has upgraded LaWS, and proved that targets tracked with a Phalanx Close-In Weapon can be easily handed over to the laser's targeting and tracking system. The result is a weapon system with a single laser weapon control console, manned by a surface warfare weapons officer aboard USS Ponce who can operate all functions of the laser -- and if commanded, fire the laser weapon.

Using a video game-like controller, that sailor will be able to manage the laser's power to accomplish a range of effects against a threat, from disabling to complete destruction.

The deployment on Ponce will prove crucial as the Navy continues its push to provide laser weapons to the fleet at large.

Data regarding accuracy, lethality, and other factors from the Ponce deployment will guide the development of even more capable weapons under ONR's Solid-State Laser - Technology Maturation (SSL-TM) program. Under this program, industry teams led by Northrop Grumman, BAE Systems, and Raytheon Corp. have been selected to develop cost-effective, combat-ready laser prototypes that could be installed on vessels such as guided-missile destroyers and the Littoral Combat Ship in 2016.

The Navy will decide next year which one, if any, of the three industry prototypes is suitable to move forward and begin initial ship installation for further testing.

"We are in the midst of a pivotal transition with a technology that will keep our Sailors and Marines safe and well-defended for years to come," said Peter Morrison, ONR program manager for SSL-TM. "We believe the deployment on Ponce and SSL-TM will pave the way for a future acquisition program of record so we can provide this capability across the fleet."

Eric Beidel is a contractor for ONR Corporate Strategic Communications.

Published April 2014

Rate this article

[Navy's laser weapon is ready for summer deployment]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2014 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy