April 19, 2016 Volume 12 Issue 15

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Buyers Guide


View Archives


Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Automatic vision system with max throughput

The new AV450 Automatic Vision System from L.S. Starrett Company is a versatile, accurate, fast, and American-made 3-axis vision system that allows users to achieve high throughput in their inspection process cost effectively. This heavy-duty CNC video-based measurement system is ideal for both repetitive, larger part-run applications and routine quality assurance in inspection labs, manufacturing, assembly, and research facilities.
Learn more.

Application Note:
Quadcopter propeller torque/thrust testing

The quadcopter's four propellers are designed to work in conjunction with each other to ensure that there are no torque imbalances that could send the vehicle spinning out of control. But just how would a professional developer or hobbyist perform accurate propeller torque and thrust testing? Advanced sensor specialist FUTEK has the answer.
Read the full article.

Engineer's Toolbox: How to choose the right relay

Relays come in a variety of form factors, styles, and technologies. Depending on your application, only one relay type may be suitable. In other cases, multiple relay types may be appropriate. By understanding the strengths and weaknesses of the different relays, you should be able to pick the one that is best suited for the job at hand. National Instruments lays out the options.
Read the full article.

Cool Tools: New Raspberry Pi 3 Model A+

Fans of the extremely popular credit card-sized computer called Raspberry Pi have something new to celebrate. The line of highly customizable base units has expanded with the third-gen A+ board, which brings the latest features and capabilities to a more compact form factor and lower price point -- only 25 bucks (and we have seen this on sale for under 20)!
Read the full article.

Vandal-resistant sealed switches

C&K has just launched its ATP19 and ATP22 series anti-vandal sealed pushbutton switches. The new high-strength, lightweight switches are IP67/IK10 rated, ensuring their suitability for operation in harsh conditions and ability to withstand potential malicious damage. The switches are also corrosion resistant and offer the industry-standard ring-illuminated version in 19-mm and 22-mm diameters.
Learn more.

New inductive-technology position sensors

Novotechnik's TF1 Series touchless linear position sensors overcome issues with legacy magnetostrictive technology. They are unaffected by strong magnetic fields and metal flakes or filings present in a user's environment. The TF1 Series consists of an inductively coupled position marker attached to a moving rod/piece of the user's application that requires a position measurement and the sensor with operational and programming status LEDs. While operating, LEDs indicate whether the sensor is operating and the marker within measuring range or out of range, as well as indicating results of internal diagnostics for valid output from the sensor. Can also measure speed and temperature.
Learn more.

Sensor development kit for power-optimized IoT applications

The RSL10 Sensor Development Kit from ON Semiconductor is designed to provide engineering teams with a comprehensive platform for developing IoT applications with cutting-edge smart sensor technology, enabled by the industry's lowest power Bluetooth Low Energy radio. The kit brings together the highly integrated RSL10 System-in-Package (RSL10 SIP) with a range of advanced low-power sensors from Bosch Sensortec. The development platform provides nine degrees of freedom (DoF) detection and environmental monitoring, including ambient light, volatile organic compounds (VOC), pressure, relative humidity, and temperature. An ultra-low noise digital microphone is also included, along with a user-programmable RGB LED, three programmable push-button switches, and 64 kb of EEPROM. Using the RSL10 Sense and Control mobile application, developers can connect to the RSL10 Sensor Development Kit to monitor sensors and to evaluate the kit's features. The app also supports multiple commercial cloud platforms for uploading sensor data.
Learn more.

EC fans offer spark-proof IP68-ATEX protection for harsh AC applications

Orion Fans has expanded its family of Electronically Commutated (EC) fans to include spark-proof IP68-ATEX-rated versions for applications involving explosive atmospheres or flammable gases. Implementing IP68-ATEX fans into a design decreases the possibility of an explosion or fire. Available in a range of sizes including 60 mm, 120 mm, and 172 mm, the EC IP68-ATEX fans are ideal for a broad range of applications including appliances, commercial and process control, refrigeration, HVAC, electronic enclosures, and cabinets. By maintaining the same interface between the fan and equipment, EC fans can be used as drop-in replacements for equivalent-sized AC fans. The AC input fans utilize a brushless DC motor and incorporate voltage transformation within the motor for significantly lower power consumption. This equates to power savings of up to 50 percent.
Learn more.

Cable assemblies for demanding microwave and RF applications

Intelliconnect has expanded its cable assembly offering for high-frequency and mission-critical applications. Comprised of high-quality cables, connectors, and terminations, the highly reliable RF cable assembly product offering now includes Low Loss, Semi-Rigid, Semi-Flex, and Conformable versions. The microwave and RF cable assembly line is designed for a wide range of applications including marine, medical, mil/aero, microwave communications, oil and gas, rail traction, test and measurement, and more. Available in a variety of sizes and performance specs, these assemblies operate up to 70 GHz and beyond and can be armored internally or externally. Phase matching is also available. Assemblies can be specified as matched sets or built to a specified phase length.
Learn more.

How electronic flow sensors help spread road salt

Salt spreading trucks use a pre-wetting system when ice needs to be removed from roads and the temperatures are too low for direct salt spreading to work. The system sprays salt water onto the road salt as it is being spread to "jump start" the melting process. But how do you monitor the amount of pre-wet salt used?
Read this short, informative blog from Gems Sensors & Controls.

Bend the rules of lighting design: Cut and form LED sheets

VCC is bending the rules of lighting design with its new VentoFlex tiles. The VentoFlex modular lighting system opens up countless ways for architects and lighting designers to make an impact. Available in 12-in. x 12-in. sheets, these innovative LED tiles can be cut and formed around any design element, including rounded corners and tight spaces, without taking up much room at all -- just 0.15 in. (3.81 mm). A pair of scissors is the only tool required to cut VentoFlex tiles to the size and shape you desire. Ten or 15 tiles can be linked together to one driver and dimmer to create thousands of square inches of versatile lighting power!
Learn more about this new and exciting lighting technology.

Slip rings improve Ethernet transmission

The Kuebler Group offers contact and contactless slip rings for reliable Ethernet transmission, achieving higher data rates and greater cycle synchronicity in demanding industrial environments. Application examples include industrial automation, bottling plants, labeling machines, rotary tables, and other processes requiring high transmission rates. The standard Slip Ring SR120 features an innovative three-chamber system and shield to enable parallel, interference-free Ethernet transmission up to 100 Mbps. It boasts a long service life up to 500 million revolutions and a rugged, modular structure that can be expanded up to 20 channels. Another model, the Slip Ring SR160 with integrated Sendix Encoder, provides position information in addition to contactless Ethernet transmission -- either two channels at 100 Mbps multiplexed or one channel at 1 Gbps.
Learn more.

How to convert from hydraulic to electric high-force linear actuators

Machine designers are converting existing linear motion systems from hydraulic to electric due to the technology's many benefits, but the process involves considering the actual force output of the cylinder, the duty cycle, and the motion profile. Specialists at Tolomatic tackle these points. Includes a very informative video.
Read the Tolomatic blog.

Integrate Alexa and more into your product or project

The MATRIX Voice Development Kit from MATRIX Labs aims to lower the barriers to entry for the creation and deployment of Internet of Things (IoT) voice applications. This platform enables users to develop voice recognition and detection projects that utilize Google Assistant or Amazon Alexa -- or any other voice recognition API. This open-source platform for the Raspberry Pi consists of a 3.14-in.-diameter development board, a radial array of 7 MEMS microphones, a Xilinx Spartan6 FPGA with 64 Mbit SDRAM, 18 RGBW LEDs, and 64 GPIO pins. It can also be used as a standalone device with the ESP32. Available from Newark element14.
Learn more from MATRIX Labs.
See purchase options from Newark element14.

Cool Tools: New Raspberry Pi Compute Module 3+

Newark element14 is now shipping the new Raspberry Pi Compute Module 3+ for same-day dispatch. Raspberry Pi Compute Module 3+ delivers the enhanced thermal performance and ease of use of Raspberry Pi 3 Model B+ in a smaller form factor, with a choice of memory variants suitable for a broad range of embedded applications including IoT devices and industrial automation, monitoring, and control systems. Compute Module 3+ simplifies the design process engineers need to undertake when developing a System on Module (SoM) solution into their final product. Engineers do not need to concern themselves with the complexities of interfacing with the BCM2837B0 processer directly and instead can concentrate on designing the interfaces to their own IO board and their application software -- simplicity that fosters rapid development.
Learn more.

Configurable analog chip computes with 1,000 times less power than digital

By Rick Robinson, Georgia Tech

Researchers at Georgia Tech have built and demonstrated a novel configurable computing device that uses a thousand times less electrical power -- and can be built up to a hundred times smaller -- than comparable digital floating-gate configurable devices currently in use.

Examples of FPAA chips and printed circuit boards. [Credit: Fitrah Hamid, Georgia Tech]



The new device, called the Field-Programmable Analog Array (FPAA) System-On-Chip (SoC), uses analog technology supported by digital components to achieve unprecedented power and size reductions. The researchers said that for many applications these low-power analog-based chips are likely to work as well as or better than configurable digital arrays.

Currently, field programmable gate arrays (FPGAs) -- digital devices widely used in consumer devices, defense systems, and more -- dominate the configurable chip market. These floating-gate integrated circuits can be altered internally at any time, and techniques to reconfigure them for many different forms and functions are well established.

Professionals familiar with FPGAs will find the programming interface of the new analog chip surprisingly like the digital circuits in many ways, said Jennifer Hasler, a professor in the Georgia Tech School of Electrical and Computer Engineering (ECE) and leader of the research team that produced the new analog architecture.

"But in other ways, the FPAA is going to seem quite different," she said. "In terms of the power needed, it's extremely different because you need only milliwatts to run the analog device, while it's hard to get an FPGA to work on less than a watt."

A paper on the new FPAA system-on-chip device has been published on the IEEE Xplore website. Another paper focusing on the details of programming FPAA devices was also published on the Xplore site. In addition, a third paper, detailing a high-level open-source programming toolset developed by Hasler and her team for programming analog arrays, has also been published online in the Journal of Low Power Electronics and Applications.

Novel techniques
Traditionally, analog technology has been used primarily for hard-wired circuits such as sensors that interface between digital devices and the real world; examples include the circuits that detect and reproduce sound in cell phones and other devices. Analog circuits are also used extensively in electronics to regulate and optimize power use. These single-function circuits cannot perform software-based computation, using hardware gates and switches, in the manner of digital integrated circuits.

Hasler's team, however, has developed techniques that perform computation using an analog-style physical architecture by reliably positioning electrons in an FPAA's connective structure. This approach stands in contrast to FPGAs, which process electrons through floating gates in ways similar to conventional digital semiconductors such as memory chips or central processing units.

One advantage of FPAAs is that they're non-volatile, Hasler explained, meaning they retain data even when power is turned off. This is similar to flash memory technology, such as the solid-state drives and storage cards commonplace today. The use of non-volatile memory reduces power consumption, in contrast to the higher power needs of the volatile SRAM configurations typically used in FPGAs.

"In addition to being non-volatile, our analog architecture lets us do something fairly radical -- we can compute using the routing fabric of the chip, exploiting areas that are usually considered just dead weight," Hasler said. "To help do this, we've developed highly efficient switches that can be programmed on, off, or in-between -- partially on and partially off. This flexibility provides both increased computation capabilities and reduced power consumption."

Milliwatts or microwatts
The present FPAA device can operate on less than 30 mW -- thousandths of a watt, Hasler explained. That level approaches three orders of magnitude less than a conventional digital configurable chip. Further design advances in analog arrays could bring their power needs down into the microwatt range -- millionths of a watt.

To program the analog environment of the new device, researchers manipulate electrons in precise ways. Using electron-injection and electron-tunneling techniques, they erase data by lowering the number of electrons at specific locations in the device structure to the lowest possible value. Then they encode new data by increasing the number of electrons located at a given location up to an exact value.

This complex approach makes possible a highly dense chip structure that offers many parameters -- meaning programmable variables that can exist in a large number of different states and offer many shadings of behavior. It is this structural density that allows greater computing capability for a given degree of physical size and power input.

"Our FPAA chip has roughly half a million of these programmable parameters," Hasler said. "They can be used as a switch in a digital manner -- using the lowest possible value for 'off' or the highest possible value for 'on' -- or we can achieve even more rich behavior using intermediate values."

A new toolset
The FPAA device includes a small amount of built-in digital circuitry that supports communication within the chip and also helps run the programming infrastructure. Utilizing these support features, the team has developed an extensive set of high-level programming tools to take advantage of the new chip.

Among other things, the new toolset is designed to make working with analog arrays accessible to those familiar with digital designs like FPGAs, which are programmed using comparable high-level tools. The new toolset can both simulate and program the FPAA reconfigurable device. A paper detailing these high-level tools has been published online.

"Our toolset uses high-level software developed in the Scilab/Xcos open-source programs, with an analog and mixed-signal library of components," Hasler said. "Georgia Tech undergraduates are already using these tools in classes in the School of Electrical and Computer Engineering that cover mixed-signal and analog devices and tools."

One area in which the analog approach is notably powerful involves command words -- voice recognition technology used in devices like smartphones to do such things as wake up circuits from an off state, Hasler said. Like traditional analog sensing circuits, an FPAA offers excellent context-aware capability at extremely low power states.

Hasler said that she has talked with several companies about potential applications of the FPAA in commercial devices. A significant number of FPAA chips has already been produced, but plans for potential large-scale manufacture of the chips have not been finalized. The key technologies in the FPAA system-on-chip are patent pending.

"We believe that analog technology offers very powerful ways to look at physical computing, with considerable potential for commercial, neuromorphic, military, and other applications," Hasler said.

Sihwan Kim, et al., "Integrated Floating-Gate Programming Environment for System-Level ICs," (IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015). http://dx.doi.org/10.1109/TVLSI.2015.2504118

Suma George, et at., "A Programmable and Configurable Mixed-Mode FPAA SoC," (IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016). http://www.dx.doi.org/10.1109/TVLSI.2015.2504119

Michelle Collins, et al., "An Open-Source Tool Set Enabling Analog-Digital-Software Co-Design," (Journal of Low-Power Electronics and Applications, 2016). http://dx.doi.org/10.3390/jlpea6010003

Published April 2016

Rate this article

[Configurable analog chip computes with 1,000 times less power than digital]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):


Copyright © 2016 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy