April 19, 2016 Volume 12 Issue 15

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Buyers Guide

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Real-World Application: Actuator linkage for diverter valve in hybrid vehicles

Cablecraft Motion Controls was contacted by a large exhaust gas management system supplier to develop a special actuator linkage to control a diverter valve in the exhaust gas stream of hybrid passenger vehicles. The application presented quite a number of challenges, including meeting cost, temperature, and PPAP timing requirements.
Read the full article.


Next-gen permanent magnet AC motor with integrated encoder

Designed for today's demanding machine drive applications, the new VFsync synchronous AC motors from Bison Gear and Engineering run at high efficiency with advanced variable frequency drives. These IP66/IP54 platform motors were optimized with FEA software and then tooled with highly efficient internal permanent magnet-style rotors. VFsync provides a compact footprint that is 56 percent smaller and 63 percent lighter than common 3-phase induction motors. Power range is .25 to 1.5 hp. They are supplied with swivel connectors and shielded cables to make installation trouble-free. Popular frame sizes available. The product line includes the new motors, quick-connect cables, and a programmable and networked VFD.
Learn more.


Largest autonomous mobile robot can lift 1 metric ton

At the Automate 2019 Show and Conference, Mobile Industrial Robots launched the MiR1000, the company's largest autonomous mobile robot (AMR). This mobile platform can automatically pick up, transport, and deliver pallets and other heavy loads up to 1,000 kg (2,200 lb) through dynamic environments. Like the MiR500 introduced in 2018, the MiR1000 is a collaborative, safe, and flexible alternative to potentially dangerous and expensive forklifts on the factory floor. MiR also released another industry first -- artificial intelligence (AI) capabilities across all of its AMRs for improved navigation.
Learn more.


Top Roller conveyor for mobile industrial robots

Real efficiency in logistics automation is achieved when the entire workflow is handled by robotics solutions that communicate smoothly with each other. That's the vision behind ROEQ's new TR500 Top Roller unit that automates load and unload operations of the MiR500, the largest and most powerful autonomous mobile robot from Mobile Industrial Robots (MiR). Danish company ROEQ is launching the Top Roller at the Automate 2019 show in Chicago this week, along with a host of other add-ons for MiR. The TR500 accommodates U.S. pallets and can be delivered with a fully automated lifter functionality for pick-up and delivery of goods.
Learn more.


Top Tech Tip: Specifying self-lubricating bearings for linear motion systems

Self-lubricating ball bushing bearings have experienced an increase in use among motion system designers thanks to their ability to significantly reduce cost of ownership, improve performance, and deliver virtually maintenance-free operation. However, these bearings may not reach their full potential without being properly specified, installed, and evaluated for compatibility with their intended environment. Learn how to specify them for long-lasting use in your motion system applications.
Read this informative Thomson article.


New long-travel linear motor stage

The new V-417.336025E1 linear translation stage from PI is engineered for industrial applications with high demands on dynamics, precision, smooth scan motion, short settling times, and low tracking error. It provides 32 in. of travel (813 mm). The stage achieves high velocities to 79 in./sec (2 m/sec) based on a direct-drive ironless linear servo motor. High accuracy, repeatability, and functionality are guaranteed by an integrated absolute-measuring linear position encoder featuring 1-nm sensor resolution. Applications include: pick and place, optics, semiconductor test and inspection, bio-tech, DNA sequencing, 3D printing, and laser processing and machining.
Learn more.


More stopping power for servo motors -- using less space

Miki Pulley's BXR-LE spring-applied Electro-Magnetic brake series safely holds a static position, without the need for external power. When the stator is energized, the brake is disengaged allowing free rotation. When no current is applied, compression springs halt the brake rotor, thereby stopping the input shaft rotation. This is an ideal feature to prevent rotation during power failure events. There are six total size configurations in the BXR-LE series to choose from. Of particular importance: These brakes have a slim design and high holding torque in a very compact package. Great for robotics.
Learn more.


Variable frequency drives benefit constant speed applications

Using a variable frequency drive (VFD) can be beneficial in many constant speed applications driven by electric motors, such as those that require controlled starting and have been historically served by a reduced-voltage soft-starter (RVSS). While an RVSS and a VFD can both provide a controlled start, let's examine the benefits of each technology and when it makes sense to use one over the other.
Read this informative Parker Hannifin blog.


How a Seventh Axis adaptation aims to move cobot technology into more factories

Advances in technology and software are expanding the scope of potential cobot work environments to include small and mid-size operations. That's why Rollon Corporation has created a Seventh Axis system for collaborative industrial robots from Universal Robots (UR). This shuttle system is designed to extend the operating area of UR's cobots to enhance their performance in automated processes for various industries without sacrificing their simplicity.
Read the Rollon article.


New 200-W high-torque brushless servo motor

The new EC-i 52XL 200W Brushless Servo Motor from maxon is a powerhouse. When space is limited but high torque and dynamics are required, the maxon EC-i 52XL motor is the ideal motor choice. With its extended length (80 mm to 110 mm), this motor with flux collector rotor provides outstanding torque performance compared to the existing EC-i 52 180W High Torque that is often needed, especially on the industrial automation front. Its extra power can be even more significant at relatively low speed, which makes it a solid fit for a variety of industrial applications including material handling and transport systems.
Learn more.


ABB launches IEC food-safe motors

ABB has launched a full range of IEC Food Safe motors designed for applications in the food and beverage industry that need frequent sanitation. The new IEC Food Safe motors are part of ABB's Food Safe family that includes stainless steel NEMA motors, mounted ball bearings, and gearing. Motors are available in the power range 0.18 to 7.5 kW, in 2- to 6-pole versions for 230- to 690-V at 50 or 60 hertz. They feature IE3 premium efficiency to reduce energy consumption and emissions. Flexible mounting arrangements ensure they will fit almost any application. Frame sizes are 71 to 132.
Learn more.


New Sinamics G120X drive series specializes in infrastructure pump, fan, and compressor applications

Siemens has introduced the new Sinamics G120X drive, a simple, seamless, and easy-to-use drive designed for use in pump, fan, and compressor applications in industries such as water/wastewater, HVAC/R, irrigation/agriculture, and in industrial environments. Sinamics G120X has a power range of 1 to 700 hp (0.75 to 630 kW) and can operate in temps from -4 to 140 F (-20 to 60 C) with any standard motor, including synchronous reluctance motors (SRM). It has an integral DC choke that improves harmonics and EMC performance. Sinamics G120X meets all the latest and upcoming UL, NEMA, and EN/IEC standards for 2019 and beyond and offers up to 100-kA short-circuit current rating (SCCR), ensuring enhanced product safety and energy efficiency.
Learn more.


High-speed, high-precision mechanical gantry system

PI has added to its family of precision automation sub-systems with the A-351 MGS, a compact mechanical gantry system engineered to deliver maximum throughput for applications that require controlled precise overhead motion. The gantry is driven by linear motors, and each axis is equipped with preloaded linear bearings. Applications include high-precision 3D printers, assembly, pick-and-place, alignment, inspection, and other industrial automation applications. The A-351 MGS gantry system is designed for high load capacity of 20 kg, twice the amount of its A-341 air-bearing-based sibling. Absolute-measuring linear encoders with nanometer resolution are optional.
Learn more.
See PI automation platforms in action.


New inductive-technology position sensors

Novotechnik's TF1 Series touchless linear position sensors overcome issues with legacy magnetostrictive technology. They are unaffected by strong magnetic fields and metal flakes or filings present in a user's environment. The TF1 Series consists of an inductively coupled position marker attached to a moving rod/piece of the user's application that requires a position measurement and the sensor with operational and programming status LEDs. While operating, LEDs indicate whether the sensor is operating and the marker within measuring range or out of range, as well as indicating results of internal diagnostics for valid output from the sensor. Can also measure speed and temperature.
Learn more.


High-traction robot goes underground

Recent developments in motion control and engineering make it possible to inspect and perform maintenance in compact sewers from the inside. The underground sewer robot is equipped with a swiveling camera and an air-powered milling machine driven by FAULHABER miniature DC motors from MICROMO.
Read the full article.


Robot learning is child's play, according to U.S. Navy researchers

By Warren Duffie, Office of Naval Research

The future of human-robot partnerships could be revolutionized by child's play -- specifically, the play of babies.

A team of researchers led by Dr. Rajesh Rao, a professor of computer science and engineering at the University of Washington, recently published a paper showing how robots can learn much like children -- amassing data by watching adults do something, determining the goal of the action, and then deciding how to perform it on their own. Rao's work is sponsored by the Office of Naval Research (ONR). You can view the paper here.

"This is a major step in designing robots that can learn from watching humans," said Dr. Micah Clark, a program officer in ONR's Warfighter Performance Department who oversees Rao's research. "It could one day result in truly intelligent machines that understand the intent and goals behind certain tasks, and help humans achieve those goals."

A University of Washington researcher conducts an experiment in which a robot learns to track human head movements. Sponsored by the Office of Naval Research, the work is led by Dr. Rajesh Rao, studying whether robots can learn through human speech or body movement. [Photo courtesy: Dr. Rajesh Rao]

 

 

 

 

For decades, scientists, writers, and filmmakers have envisioned a future where robots make human life safer and easier by doing mundane household chores or helping troops in battle.

Rao believes this type of artificial intelligence might be achieved with inspiration from the most adorable and inquisitive of humans: babies.

"Babies learn about the world around them through play," said Rao, "grabbing toys, pulling them apart, banging them on the floor, or pushing them off tables. This self-exploration helps babies learn the physics of their environments, and how their actions influence objects."

Rao collaborated with Dr. Andrew Meltzoff, a respected child psychologist and co-director of the Institute for Learning and Brain Sciences at the University of Washington. Meltzoff's work (not sponsored by ONR) shows that children as young as 18 months can infer the goal of an adult's actions and develop ways of reaching that goal themselves.

Using data from behavioral tests conducted by Meltzoff involving babies, Rao's team designed a machine-learning model to allow robots to explore how their actions result in diverse outcomes.

They tested the model in two types of experiments. The first was a "gaze" computer simulation where the robot learned to track the head movements of others to determine where they were looking. The second involved the robot watching humans move toys around on a tabletop, and then being left to play with the toys on its own.

Rao's team observed several patterns. After trial and error, the robot was able to figure out the consequences of its actions on the toys. It learned, for example, that a particular toy was harder to pick up than push, and that pushing a toy too close to the edge would make it fall.

The robot could observe and infer the goal of a human action on a toy, and achieve the same goal but with a different action it considered more reliable. For example, it could push instead of pick up a toy and place it at a particular table spot. It could even signal for human help when it felt its actions were too unreliable.

"To get a robot to perform a task like picking up a toy, you normally have to code instructions or physically move a robotic limb with a joystick or other controller," said Rao. "Our research might make it possible for people to eventually train and program robots through demonstration and speech, much like parents teach their children. This would be useful to our military in jobs like disarming explosive devices, fighting fires, transporting heavy equipment, or going into combat zones, where there is a premium on teaching robots new skills on the fly."

Rao and his team plan on scaling up their learning model and designing more sophisticated robots to perform more complex tasks. His work is part of ONR's Science of Autonomy Program.

Published April 2016

Rate this article

[Robot learning is child's play, according to U.S. Navy researchers]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:

Copyright © 2016 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy