June 06, 2017 Volume 13 Issue 21

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Buyers Guide

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Synchronous motors/drives don't need encoder

The SINOCHRON Motor design from ABM DRIVES offers advantages in continuous-duty applications like driving pumps and fans. The efficiency is also better in partially loaded duty cycles when compared to standard asynchronous motors. This motor can replace a stepper motor in some applications. Drive units are virtually loss-free in no-load operation. This motor design also offers advantages in powering conveying equipment, escalators, spooling machines, compressors, and traction drive units. By substituting existing line-powered three-phase drive units, energy savings of 20 to 35 percent can be expected.
Click here to learn more.


Mike Likes: TI doubles power density with motor control

Texas Instruments recently introduced two new device families that help reduce size and weight in motor drive applications. When used together, the brushless DC (BLDC) gate drivers and power blocks require half the board space of competing solutions. An 18-V compact BLDC motor reference design demonstrates how these components can drive 11 W/cm3 power and enable engineers to jump start their designs for smaller, lighter weight power tools, integrated motor modules, drones, and more.
Read the full article.


Stepper motor controller delivers 2,000x basic resolution

Precision positioning systems industry leader PI (Physik Instrumente) has released a higher performance model of its successful Mercury Stepper Motion controller. Stepper motors take up discrete positions in a revolution of a constant distance. Typical commercial models provide 200 to 1,000 full steps per revolution. Designed to deliver more than 2,000 times the basic motor resolution, the C-663.12 Mercury controller is the newest addition to PI’s suite of motion control solutions.
Click here to learn more.


Micro gripper for small, fragile part assembly

The MGR5 electric micro gripper from SMAC was designed for small, fragile part assembly. It features a light-force capability of 10 g or less and a soft-land capability for pick and place of delicate parts. Each jaw can be independently controlled in force, position, and velocity, with a 5-micron linear encoder standard (1 micron optional). Ideal for a wide range of positioning, measuring, and inspection applications, particularly where 100% verification is required.
See this new gripper in action.
Get more detailed info on this micro gripper.


Dual-feedback voice coil positioning stage

The VCS20-020-CR-01-MC-F3K voice coil positioning stage can operate under closed-loop position control with force monitoring or closed-loop force control with position monitoring. It uses H2W voice coil motor NCC20-18-020-1A to generate a continuous/peak force of 2 lb (8.9 N)/6 lb (26.7 N) with a total stroke length of 2 in. (50.8 mm). The 1-micron resolution encoder allows for precise positioning. The 3-kg rated force transducer allows for 0.01- to 3-kg of push/pull force feedback control. It comes supplied with a high-accuracy crossed roller bearing. The motor coil is the moving part of the assembly in order to reduce the moving mass of the system. Power is supplied to the motor via a high-flex, high-reliability flat ribbon cable.
Click here to learn more.


Thinnest moving coil linear motor in the world

At 6 mm wide, SMAC Moving Coil Actuators claims the LCA6 is the thinnest linear moving coil in the world. This unit is cross-roller guided, increasing accuracy. Flat coils are centered between cross rollers, so deflection load is reduced and rigidity is increased. In addition, the LCA6 is small and stackable, conserving space. The LCA6 is great for electronic pick-and-place, biomedical dispensing, and QC measurement. Specs include a linear stroke of 10 mm and peak force [N] = 3.5 @ 1.2 amps (24V).
Click here to learn more about this product line.


Program templates make automation even easier

Robotiq offers new tools to help collaborative-robot beginners save a lot of time programming Robotiq products and UR robots. Program templates are now available and ready to be downloaded from Robotiq’s online resource center. Every package includes a program file, step-by-step procedures, and a demonstration video. Four program templates are available: Stacking/Unstacking Using the Force Torque Sensors, Palletizing Using the Wrist Camera, Measuring Insertion Force, and Increasing the Wrist Camera’s Field of View. New programs are expected to come out every week.
Click here to learn more.


New industrial-grade optical encoder

Quantum Devices' Model QDH20 provides an improved feedback solution in demanding applications typically using a standard size 20 package. Outputs consist of a quadrature A & B with reference pulse Z as a standard feature. The output can be configured with either the industrial standard 5-V to 26-V OL7272 line driver or open collector outputs. The QDH20 features two heavy-duty bearing sets holding the output shaft and two more bearings along with an integral flexible spring mount to isolate the working pieces of the encoder from mechanical stresses. Features include 500-kHz fundamental frequency response, high-temp option (100 C), and high noise immunity.
Click here to learn more.


Cool Tools: New Fluke motor diagnostics tool incorporates machine learning

Fluke and Veros Systems have collaborated on asset performance and condition monitoring technologies to increase visibility into the efficiency and reliability of electric motor-driven machines. The Fluke 438-II Power Quality and Motor Analyzer is the first tool to result from that partnership. It analyzes three-phase power-quality measurements and uses an innovative method developed by Veros to calculate motor output torque, speed, horsepower, and efficiency. Using this information, engineers and technicians can evaluate system performance and detect overload conditions while the motor is operational, without the use of any mechanical sensing devices such as tachometers, strain gauges, or other intrusive sensors.
Click here to learn more.


Mini but mighty high-load linear actuator

Equipped with precision ground ball screws for higher speed and a longer service life, the L-239 high-force actuator from Physik Instrumente (PI) has a positioning range of 52 mm (2 in.), pushing force of 300 N (66 lb), and 50-mm/sec (2-in./sec) maximum velocity. The nonrotating tip enables uniform motion, preventing wobble, torque, and wear at the point of contact. Noncontact limit switches protect the mechanics, while a direction-sensing reference point switch speeds up the homing procedure and supports automation applications. Special versions available for vacuum applications.
Click here to learn more.


Motor Tech: UAV camera stabilization with brushless motors

Today, recon is dominated by unmanned aerial vehicles (UAVs) and drones due largely to concerns for pilots’ safety and costs. However, photos and videos obtained from UAVs are only useful if they are crisp and clear, which requires both precise focusing and extreme stabilization of the camera system. Compact and powerful FAULHABER brushless DC motors from MICROMO were selected to get the job done.
Read the full article.


Become a robot programmer in only 87 minutes!

Learning how to set up and program a collaborative robot -- or cobot -- no longer depends on real-life access to a robot or a training class. Now everybody with a desire to learn the concepts of cobots can log in to the Universal Robots Academy and get the introduction necessary to master basic programming skills. Become a master of the cobots! (That's a pretty sweet title.)
Click here to learn more.


Low-cost spring-applied brakes

Inertia Dynamics type FSB brakes are designed to decelerate or hold inertial loads when the voltage is turned off. These brakes can be mounted to a bulkhead or motor. The FSB brakes are rated up to 100 lb-in. static torque and fit motors up to 5.3 in. OD. Features include 12-V, 24-V, 90-VDC, or 120-VAC windings; bore sizes from 1/4 in. to 3/4 in.; low current consumption; and low cost. Metric bores and special voltages available.
Click here to learn more.


Are you using the Right Coupling for your motion control application?

Servometer® precision motion control couplings are available with both set screw and clamp style ends. Electro-deposited bellows technology offers seamless construction and the best combination of flexibility and strength among couplings technologies. These versatile, flexible nickel and stainless steel shaft couplings are capable of accommodating misalignments for parallel, angular and axial motion. Our recently released video showcases their unique characteristics, capabilities, design and various applications.
View video ...


Smart sensors provide health checks for motors

The ABB Ability Smart Sensor for motors uses compact sensors to pick up multiple data streams from low-voltage motors and provides information about motor health and performance via a smartphone or a dedicated web portal. By converting regular LV motors into intelligent, connected machines, the solution enables advanced maintenance planning that will help businesses cut costs and boost productivity. Predictive analytics based on data from the solution can reduce downtime up to 70%, extend motor lifetime by as much as 30%, and cut energy consumption up to 10%.
Click here to learn more.


Researchers find computer code that Volkswagen used to cheat emissions tests

An international team of researchers has uncovered the cheating system inside VW cars' onboard computers.

 

 

An international team of researchers has uncovered the mechanism that allowed Volkswagen to circumvent U.S. and European emission tests over at least six years before the Environmental Protection Agency put the company on notice in 2015 for violating the Clean Air Act.

During a year-long investigation, researchers found code that allowed a car's onboard computer to determine that the vehicle was undergoing an emissions test. The computer then activated the car's emission-curbing systems, reducing the amount of pollutants emitted. Once the computer determined that the test was over, these systems were deactivated.

When the emissions curbing system wasn't running, cars emitted up to 40 times the amount of nitrogen oxides allowed under EPA regulations.

The investigative team, led by Kirill Levchenko, a computer scientist at the University of California San Diego, presented their findings at the 38th IEEE Symposium on Security and Privacy in the San Francisco Bay Area on May 24, 2017.

"We were able to find the smoking gun," Levchenko said. "We found the system and how it was used."

Computer scientists obtained copies of the code running on Volkswagen onboard computers from the company's own maintenance website and from forums run by car enthusiasts. The code was running on a wide range of models, including the Jetta, Golf, and Passat, as well as Audi's A and Q series.

"We found evidence of the fraud right there in public view," Levchenko said.

During emissions standards tests, cars are placed on a chassis equipped with a dynamometer, which measures the power output of the engine. The vehicle follows a precisely defined speed profile that tries to mimic real driving on an urban route with frequent stops.

The conditions of the test are both standardized and public. This essentially makes it possible for manufacturers to intentionally alter the behavior of their vehicles during the test cycle. The code found in Volkswagen vehicles checks for a number of conditions associated with a driving test, such as distance, speed, and even the position of the wheel. If the conditions are met, the code directs the onboard computer to activate an emissions-curbing mechanism.

A year-long investigation
It all started when computer scientists at Ruhr University, working with independent researcher Felix Domke, teamed up with Levchenko and the research group of computer science professor Stefan Savage at the Jacobs School of Engineering at UC San Diego.

Savage, Levchenko, and their team have extensive experience analyzing embedded systems, such as cars' onboard computers, known as Engine Control Units, for vulnerabilities. The team examined 900 versions of the code and found that 400 of those included information to circumvent emissions tests.

Computer scientist Kirill Levchenko led the research effort at UC San Diego.

 

 

A specific piece of code was labeled as the "acoustic condition" -- ostensibly, a way to control the sound the engine makes. But in reality, the label became a euphemism for conditions occurring during an emissions test. The code allowed for as many as 10 different profiles for potential tests. When the computer determined the car was undergoing a test, it activated emissions-curbing systems, which reduced the amount of nitrogen oxide emitted.

"The Volkswagen defeat device is arguably the most complex in automotive history," Levchenko said.

Researchers found a less sophisticated circumventing ploy for the Fiat 500X. That car's onboard computer simply allows its emissions-curbing system to run for the first 26 minutes and 40 seconds after the engine starts -- roughly the duration of many emissions tests.

Researchers note that for both Volkswagen and Fiat, the vehicles' Engine Control Unit is manufactured by automotive component giant Robert Bosch. Car manufacturers then enable the code by entering specific parameters.

Diesel engines pose special challenges for automobile manufacturers because their combustion process produces more particulates and nitrogen oxides than gasoline engines. To curb emissions from these engines, a vehicle's onboard computer must sometimes sacrifice performance or efficiency for compliance.

The study draws attention to the regulatory challenges of verifying software-controlled systems that may try to hide their behavior and calls for a new breed of techniques that work in an adversarial setting.

"Dynamometer testing is just not enough anymore," Levchenko said.

Reference
"How They Did It: An Analysis of Emission Defeat Devices in Modern Automobiles."
Authors: Guo Li, Kirill Levchenko and Stefan Savage from UC San Diego; Moritz Contag, Andre Pawlowski and Thorsten Holz from Ruhr University; and independent researcher Felix Domke.

This work was supported by the European Research Council and by the U.S. National Science Foundation (NSF).

Source: UCSD

Published June 2017

Rate this article

[Researchers find computer code that Volkswagen used to cheat emissions tests]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:

Copyright © 2017 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy