August 01, 2017 Volume 13 Issue 29

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Buyers Guide

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Cool Tools: You'll FLIP over this inspection system

Who doesn't like a little flexibility these days? The L.S. Starrett Company has just introduced the HVR100-FLIP, an innovative large field-of-vision (FOV) Benchtop Vision Measurement System that can be used in either a vertical or horizontal orientation and features a high-resolution digital video camera and minimal optical distortion for accurate FOV measurements of up to 90 mm (3.65 in.). The changeable orientation lends itself to an extremely wide array of applications, from flat parts such as gaskets and seals to turned and threaded parts. Includes a 24-in. LCD touch-screen monitor, LED ring light, and motorized drive. Auto Part Recognition can be set to recognize and inspect a part in a few seconds.
Click here to learn more.


World's first solid-state 3D LiDAR IC receives two CES 2018 Innovation Awards

LiDAR laser surveying tech is now available to the masses. LeddarTech is the developer and owner of Leddar, a patented solid-state LiDAR sensing technology that constitutes a novel approach to light detection and ranging. Their product recently one two CES 2018 Innovation Awards in the categories of "Embedded Technologies" and "Vehicle Intelligence and Self-Driving." Up to now, this high-resolution 3D-mapping technology has been very expensive to incorporate into planes, autonomous cars, and drones. This advancement should help push forward large-scale production of automotive-grade LiDAR at an affordable price for mass-market vehicles.
Learn more about this exciting technology.


MEMS inertial accelerometers for drones and more

The Silicon Designs Model 1525 Series tactical-grade MEMS inertial accelerometer family is ideal for zero-to-medium frequency instrumentation applications that require high repeatability, low noise, and maximum stability, including tactical guidance systems, navigation and control systems (GN&C), AHRS, unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), remotely operated vehicles (ROVs), robotic controllers, flight control systems, and marine- and land-based navigation systems. They may also be used to support critical industrial test requirements, such as those common to agricultural, oil and gas drilling, photographic and meteorological drones, as well as seismic and inertial measurements.
Click here to learn more.


First 7-axis motion and pressure sensor

TDK has announced the availability of the InvenSense ICM-20789 MEMS 7-axis integrated inertial device, combining a 3-axis gyroscope, 3-axis accelerometer, and an ultra low-noise MEMS capacitive barometric pressure sensor. The ICM-20789 features a single small footprint, with the industry’s lowest pressure noise of 0.4Pa RMS and excellent temperature stability with a temp coefficient of +/-0.5 Pa/°C. Applications include: drones and flying toys; smart watches, wearables, activity monitoring; motion-based gaming controllers; virtual reality headsets and controllers; and indoor and outdoor navigation.
Click here to learn more.


Energy Harvesting Applications Design Kit (limited release)

AVX has announced the limited release of its new Energy Harvesting Application Design Kit. The kit features a wide range of low-loss components hand-selected to provide engineers with ideal solutions for energy storage, blocking, IC support, output filtering, and external connections in thermoelectric generators, solar cells, piezoelectric devices, and micro wind turbines. Parts include MLCCs, supercapacitors, Schottky diodes, inductors, and connectors. The kit also comes with a booklet that provides users with a brief introduction to energy harvesting and additional information about the components it contains.
Click here to learn more.


New multi-turn sensors with a clutch

Novotechnik, U.S. introduces the ML Series of Multi-Turn Rotary Sensors. These sensors feature a unique friction clutch instead of the end-stops typically found on mechanical multi-turn sensors. The clutch produces a click sound to let users know they have reached end-of-range, and it permits continued turn past end-scale. Compare this feature to a device simply breaking as it is turned past its end-stops. Compact in size, ML Series sensors have a 1/2-in.-sq profile and include models with 6, 10, 25, 50, or 100 turns. Applications include forklifts, sliding gates, electric drive feedback, compactors, and medical devices.
Click here to learn more.


Multi-switch detection interface for automotive

Automotive body control modules (BCMs) are electronic control units that manage numerous vehicle comfort, convenience, and lighting functions, including door locks, windows, chimes, closure sensors, interior and exterior lighting, wipers, and turn signals. John Griffith, Automotive Systems Engineer, Texas Instruments, runs through the benefits -- including significant overall power savings -- of incorporating these devices into automotive designs.
Read the full article.


Cool Tools: Babysitter for equipment now includes thermal monitoring

Fluke has expanded the capabilities of its Condition Monitoring system to include thermal monitoring with the addition of the new Fluke 3550 FC Thermal Imaging Sensor. Maintenance managers can now collect a more comprehensive variety of key-indicator data -- thermal imaging, voltage, current, temperature, and power -- on critical equipment to build a real-time picture of an asset’s condition. Alarms can be set to notify technicians via their mobile phones when specific measurement thresholds have been hit. Machine builders might suggest this system when they sell applicable units.
Click here to learn more.


Simplify thermal management, handle high surges

Littelfuse has introduced two new series of High Temperature Alternistor Triacs. With a maximum junction temperature of 150-deg C, the 16A QJxx16xHx Series and 25A QJxx25xHx Series are designed for use as AC switches, helping circuit designers address overheating challenges in AC power control applications with limited or no heat sinking. Applications include: heater control in coffeemakers; tankless water heaters and infrared heaters; AC solid-state relays; dimmers for incandescent and LED lighting; motor speed control in kitchen appliances and power tools; and compressor motor control in light industrial applications.
Click here to learn more.


Cool Tools: Wireless pocket oscilloscope

Saelig has introduced the IkaScope WS200, a pen-shaped battery-powered wireless oscilloscope that streams captured signals to almost any Wi-Fi-connected screen. This tool offers a 30-MHz bandwidth with its 200-MSa/s sampling rate, and the maximum input is +/-40 Vpp. It provides galvanically isolated measurements even when a USB connection is charging the internal battery. The IkaScope WS200 will work on desktop computers (Windows, Mac, and Linux) as well as on mobile devices like tablets or smartphones (iOS and Android Q4 2017). Application software can be downloaded for whichever platform is needed.
Click here to learn more.


Multi-axis robotic controller

Aerotech’s HEX RC is a 6-axis motion controller ideal for controlling robotic systems like hexapods. It is 4U rack-mountable and compatible with the Automation 3200 (A3200) motion platform. A high-performance processor provides the intense computing power needed to run up to 32 axes, perform complex, synchronized motion trajectories, manipulate I/O, and collect data at high speeds. This unit features 6 axes of drives capable of controlling any combination of brush, brushless, or stepper motors (both current loop and servo loop closures). An optional 6-axis jog pendant permits easy, manual control of the positioning system.
Click here to learn more.


Using natural refrigerants in cooling system design

The use of natural refrigerants is on the rise, creating a new set of challenges for cooling system design. You can optimize safety and efficiency by understanding the implications of the trend on component design and selection. This new white paper from Sensata Technologies provides an overview of methods used to mitigate these technical challenges as well as a look at some of the HVAC and refrigeration hardware and safety technologies required, especially pressure switches and pressure sensors.
Read the white paper (no registration required).


Compact touchless position sensors

TFD Series touchless linear position sensors from Novotechnik provide wear-free operation in tight spaces for measurement of short stroke lengths. They use a magnetic position marker to provide a touchless measurement range of 0 to 14, 24, or 50 mm (depending on model). These sensors make measurements through air and non-magnetic materials. Applications include textile machinery, packaging machinery, sheet metal machinery, medical applications, marine, mobile engine management systems, industrial trucks, construction machinery, and agricultural and forestry machinery.
Click here to learn more.


Connectors: High-current DC power in compact design

Amphenol Industrial Products Group now offers a versatile connection system that distributes high-current DC power in a compact design. Designed to connect wire to wire, wire to board, and busbar terminations, the Amphe-PD series distributes higher currents with less heat than similar-sized connectors on the market. Ideal for use in datacenter equipment, robotics, and industrial automation, the Amphe-PD series connectors offer wire terminations ranging from 12 AWG to 4 AWG.
Click here to learn more.


Cool Tools: Wireless digital micrometer

The new 40 EWRi is the latest addition to Mahr's Integrated wireless family of products, including digital calipers, indicators, and depth gages, which allow users to measure faster, more easily, and more reliably. Measurement data is transferred to an i-Stick on a computer without any interfering data cables, and MarCom software makes data acquisition simple: Just take a measurement and transmit measuring data directly into MS Excel or via a keyboard code into any Windows program or existing SPC application.
Click here to learn more.


Imaging breakthrough reveals magnets' internal patterns

A new imaging technique has helped scientists make a breakthrough in how they visualize the directions of magnetization inside an object.

Magnets play a vital role in everyday life, are used in everything from hard drives to energy production, and scientists have already been able to study the structure of thin films of magnetic materials. However, imaging the inner structure of thicker forms of magnets has remained an experimental challenge until now. A better understanding of magnets could contribute to the creation of better motors, more efficient energy production, and hard drives capable of holding more data.

In a new paper published in the journal Nature, scientists based in Scotland and Switzerland describe how they have used tomography and high-energy X-rays, combined with a novel reconstruction algorithm, to peer inside and reconstruct the magnetic structure of a micrometer-sized "pillar" of gadolinium-cobalt magnetic material for the first time.

The scientists, from the University of Glasgow and the Paul Scherrer Institute and the ETH Zurich in Switzerland, observed complex internal magnetic patterns and quickly realized that they consisted of tangled fundamental magnetic structures. They were able to see "domains," or regions of homogeneous magnetization, and "domain walls," the boundaries separating two different domains.

They also observed magnetic vortices, which have a structure analogous to that of tornados, and all of these structures intertwined to create a complex and unique pattern.

One specific kind of structure stood out and gave additional significance to the scientists' results: a pair of magnetic singularities, or so-called "Bloch points." At a Bloch point, the magnetization abruptly changes its direction and locally points in all possible directions on the surface of a sphere, reminiscent of the spines on the back of a curled up hedgehog. Bloch points were predicted theoretically in 1965, but the structure directly surrounding them has only now been observed with these new measurements.

The structure of Bloch points, like that of other singularities such as black holes in space, can be measured through the effect they have on their surroundings. The team has measured particular configurations -- twists in the magnetization -- that had been predicted to give away the presence of the singularities.

Dr. Sebastian Gliga, Marie Curie Research Fellow at the University of Glasgow, played a key role in interpreting the measured magnetic structure based on micromagnetic theory and state-of-the-art simulations.

Dr. Gliga said: "In ferromagnets, where the magnetization can be considered continuous on the mesoscopic scale, these singularities are points where this description breaks down.

"Bloch points constitute monopoles of the magnetic charge, and although they were first predicted over 50 years ago, they have never been experimentally observed before.

"This is a breakthrough in magnetic imaging, and I was thrilled to collaborate on understanding the observed magnetic structures."

Lead author of the study Claire Donnelly, who developed the reconstruction code and performed the experiments along with her colleagues at the ETH Zurich and the Paul Scherrer Institute, is originally from Glasgow. In fact, she was a project student at the University of Glasgow before moving to the ETH Zurich for her PhD.

Donnelly said: "Lower energy soft X-rays have already very successfully been used to achieve a similar map of the magnetic moments. But soft X-rays hardly penetrate such magnetic materials, so you can only use them to see the magnetization patterns of thin films or at the surface of bulk objects."

Principal investigator of the study Professor Laura Heyderman, of the Paul Scherrer Institute and the ETH Zurich, said: "Many people did not believe that we would be able to achieve this 3D magnetic imaging with hard X-rays.

"We really feel like we are diving inside the magnetic material, seeing and understanding the 3D arrangement of the tiny magnetic compass needles that give rise to the magnetic structure."

The team's paper, titled "Three dimensional magnetisation structures revealed with X-ray vector nanotomography," is published in Nature (doi:10.1038/nature23006).

Source: University of Glasgow

Published August 2017

Rate this article

[Imaging breakthrough reveals magnets' internal patterns]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:

Copyright © 2017 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy