December 17, 2019 Volume 15 Issue 48

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

SOLIDWORKS 2025: Sheet metal design top features from an expert

Find out what's new in SOLIDWORKS 2025 when it comes to sheet metal and weldments, and learn some valuable tips and tricks along the way from TriMech. Topics covered include copying cut list properties, bend notches, tab and slot enhancements, groove beads (a new type of weld bead), performance enhancements, and more. When you're done, check out TriMech's full YouTube channel filled with educational material.
View the video.


Introducing ECOMO: Revolutionizing energy efficiency for transformers with the power of nature

ECOMO is ushering in a new era of energy efficiency for existing transformers. This innovative unit from Japan reduces power consumption by 5 to 15% for transformers and other electrical equipment by harnessing the natural properties of tourmaline and ferrite. Many users have achieved a return on investment in under two years, and an ROI calculator is available to estimate potential savings. Easy installation. Requires no external power source. Sound intriguing?
Learn more.


Tech Tip: How to create high-quality STL files for 3D prints

Have you ever 3D printed a part that had flat spots or faceted surfaces where smooth curves were supposed to be? You are not alone, and it's not your 3D printer's fault. According to Markforged, the culprit is likely a lack of resolution in the STL file used to create the part.
Read this detailed and informative Markforged blog.


LEDs: High-precision and focused light source

Würth Elektronik's WL-SMCW SMT Mono-color Chip LED Waterclear now includes a compact model with a footprint of just 1.6 mm x 0.8 mm, in which a dome lens focuses the light with an emission angle of just 30 degrees. With this LED, light can be precisely directed onto a small area while minimizing light scattering and energy loss. This space-saving LED is suitable for consumer electronics, medical devices, handheld products, and symbol or text displays. Available LED colors are blue, green, light green, yellow, amber, and red. A model with diffuse light (WL-SMTD) is also available.
Learn more.


Chip fuse with 'slow-blow' characteristic

SCHURTER's compact and powerful SMT chip fuse UST 1206 has enjoyed great popularity since its intro in 2008. In response to customer requests, SCHURTER has expanded this line with even more powerful versions with rated currents up to 35 A. The SCHURTER UST 1206 is a chip fuse for surface mounting with a "slow-blow" characteristic. This means it has a high melting integral, so the fuse does not trip immediately at inrush current peaks higher than the rated current. This is of great importance in many industrial applications (e.g. motors, power converters).
Learn more.


Long-life electric actuators: Improved controllability, performance

Thomson Electrak LL Linear Actuators now offer your machine designs a higher speed option, more electronic control options (including CANopen), and a 48-V option to meet the power requirements in battery-powered applications. Thomson says the new Electrak LL choices are for those who want to gain more control over the position, load, and speed of their applications, such as smart railway pantographs and couplers, AGVs, automated farming robots, movable steps, and access lifts for trains and buses.
Learn more and get the specs.


Real-world applications: FUTEK 100 sensor examples

Get inspired. FUTEK has more than 100 real-world application examples for their load cells, force transducers, torque sensors, pressure sensors, and multi-axis sensors. From a cryogenic load cell on the Mars Curiosity rover to fly-by-wire multi-axis force and torque sensors for aircraft, learn about sensor systems, their specs, and design. Automotive, manufacturing, medical, robotics, and automation are covered too. Fascinating and highly practical.
Learn more.


Ultra-compact hollow-shaft angle sensor tracks angle even if power is cut

Novotechnik's WAL 200 Series of hollow shaft angle sensors provides absolute rotary position -- even if power is removed. After power is restored, this sensor provides the correct angle. With a 7-mm profile and 22-mm diameter, it is designed to fit in applications with very limited space. The WAL 200 Series has a measurement range of 0 to 340 degrees. Mechanical range is a continuous 0 to 360 degrees. Applications include volumetric dosing systems, joysticks, and more.
Learn more.


What can you do with touchless magnetic angle sensors?

Novotechnik has put together an informative video highlighting real-world applications for their RFC, RFE, and RSA Series touchless magnetic angle sensors. You may be surprised at the variety of off-highway, marine, material handling, and industrial uses. You'll learn how they work (using a Hall effect microprocessor to detect position) and their key advantages, including eliminated wear and tear on these non-mechanical components. We love when manufacturers provide such useful examples.
View the video.


EMI suppression capacitors with enhanced humidity resistance

TDK Corporation has launched the EPCOS B3292xM3/N3 series of X2 EMI suppression capacitors. These new components are 20% smaller than previous models and meet Grade III Test B standards for temperature, humidity, and bias (THB). Their compact size and enhanced durability suit space-constrained, high-humidity environments, especially for "across-the-line" applications in automotive and industrial settings. Applications include automotive on-board chargers, uninterruptible power supplies, and hybrid inverters for energy storage systems.
Learn more.


Uses of thermal cameras in manufacturing expand: This time around to papermaking

What can you so with FLIR thermal cameras to improve your industrial processes? Recent developments in thermal signature analytics have expanded the applications of thermal cameras beyond routine troubleshooting. In papermaking, they now contribute to paper machine control, energy usage benchmarking, wet streak detection, and the identification and prediction of certain classes of sheet breaks. Maybe you'll get some ideas for your applications.
Read the full article.


3-axis motion made simple using CLICK PLUS PLC

Automation-Direct CLICK PLUS PLCs, when combined with stepper motors, make advanced motion control and edge integration simple for smaller systems. Learn motion control basics, motor options, motion with micro-PLCs and steppers, and more in this informative whitepaper from AutomationDirect. No registration required.
Get the AutomationDirect whitepaper.


Benchtop ionizer removes static at a distance

The award-winning EXAIR Varistat® Benchtop Ionizer is a powerful fan-driven static eliminator engineered to neutralize static charges on surfaces in demanding industrial environments. This Ionizer delivers a consistent stream of ionized airflow, effectively eliminating static and particulates without the need for compressed air. The Varistat is now available in 230 V to meet the needs of industrial locations. Easily mounted and manually adjustable.
Learn more.


All about slip rings: How they work and their uses

Rotary Systems has put together a really nice basic primer on slip rings -- electrical swivels that carry a current from a stationary wire into a rotating device. Common uses are for power, proximity switches, strain gauges, video, and Ethernet signal transmission. This introduction also covers how to specify, assembly types, and interface requirements. Rotary Systems also manufactures rotary unions for fluid applications.
Read the Rotary Systems article.


Digital microscope with 2,040x mag: Under $200

Inspect work products or help your little engineer at home win that science fair with the AD246S-M HDMI Digital Microscope from Andonstar Technology Co. This tri-lens unit boasts a wide magnification range (60 to 240x, 18 to 720x, 1,560 to 2,040x), very good image performance, built-in rotatable monitor, and a slew of multifunctional accessories including a remote, dimmer cable to adjust illumination, and more. A solid choice for a small investment.
Learn more.


'Poor man's qubit' can solve quantum problems without going quantum

By Kayla Wiles, Purdue University

It may still be decades before quantum computers are ready to solve problems that today's classical computers aren't fast or efficient enough to solve, but the emerging "probabilistic computer" could bridge the gap between classical and quantum computing.

Engineers at Purdue University and Tohoku University in Japan have built the first hardware to demonstrate how the fundamental units of what would be a probabilistic computer -- called p-bits -- are capable of performing a calculation that quantum computers would usually be called upon to perform.

The study, published in Nature on Sept. 18, introduces a device that serves as a basis for building probabilistic computers to more efficiently solve problems in areas such as drug research, encryption and cybersecurity, financial services, data analysis, and supply chain logistics.

Today's computers store and use information in the form of zeroes and ones called bits. Quantum computers use qubits that can be both zero and one at the same time. In 2017, a Purdue research group led by Supriyo Datta, the university's Thomas Duncan Distinguished Professor of Electrical and Computer Engineering, proposed the idea of a probabilistic computer using p-bits that can be either zero or one at any given time and fluctuate rapidly between the two.

"There is a useful subset of problems solvable with qubits that can also be solved with p-bits. You might say that a p-bit is a ‘poor man's qubit,'" Datta said.

Whereas qubits need really cold temperatures to operate, p-bits work at room temperature like today's electronics, so existing hardware could be adapted to build a probabilistic computer, the researchers say.

The team built a device that is a modified version of magnetoresistive random-access memory, or MRAM, which some types of computers use today to store information. The technology uses the orientation of magnets to create states of resistance corresponding to zero or one.

For the first time, researchers have demonstrated a way to build a probabilistic computer. This circuit includes a modified version of a magnetoresistive random-access memory device (red) to interconnect eight p-bits. [Purdue University image/Ahmed Zeeshan Pervaiz]

 

 

 

 

Tohoku University researchers William Borders, Shusuke Fukami, and Hideo Ohno altered an MRAM device, making it intentionally unstable to better facilitate the ability of p-bits to fluctuate. Purdue researchers combined this device with a transistor to build a three-terminal unit whose fluctuations could be controlled. Eight such p-bit units were interconnected to build a probabilistic computer.

The circuit successfully solved what is often considered a "quantum" problem: breaking down, or factoring, numbers such as 35,161 and 945 into smaller numbers, a calculation known as integer factorization. These calculations are well within the capabilities of today's classical computers, but the researchers believe that the probabilistic approach demonstrated in this paper would take up much less space and energy.

"On a chip, this circuit would take up the same area as a transistor, but perform a function that would have taken thousands of transistors to perform. It also operates in a manner that could speed up calculation through the parallel operation of a large number of p-bits," said Ahmed Zeeshan Pervaiz, a Ph.D. student in electrical and computer engineering at Purdue.

Realistically, hundreds of p-bits would be needed to solve bigger problems -- but that's not too far off, the researchers say.

"In the near future, p-bits could better help a machine to learn like a human does or optimize a route for goods to travel to market," said Kerem Camsari, a Purdue postdoctoral associate in electrical and computer engineering.

The Purdue group is associated with the Discovery Park Center for Computing Advances by Probabilistic Spin Logic led by Joerg Appenzeller, who also recently annnounced the launch of Purdue-P. A patent application for this technology has been filed through the Purdue Research Foundation Office of Technology Commercialization.

The work was partially supported by the Defense Advanced Research Projects Agency (DARPA); the Semiconductor Research Corp.; Japan's Council for Science, Technology and Innovation; the Japan Society for the Promotion of Science; and the Research Institute of Electrical Communication of Tohoku University.

Published December 2019

Rate this article

['Poor man's qubit' can solve quantum problems without going quantum]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2019 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy