September 22, 2020 Volume 16 Issue 36

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Round vs. square rails -- which are better for you?

Thomson invented the world's first anti-friction linear ball bushing bearings in 1946. For many years, these round-rail linear guides satisfied every linear motion control requirement. However, as machines required closer tolerances, the round rail didn't always fit the bill. Learn the pros and cons of each design type.
Read this informative Thomson blog.


New bearings reduce wear in heavy-duty applications

igus has introduced a new bearing with an improved iglide material, called TX2, that offers self-lubricating and maintenance-free properties for heavy-duty applications. TX2 increases wear resistance by a factor of 3.5 in load ranges with more than 100-MPa surface pressure. The material is ideal for components in machines that serve construction and agriculture, which can require more than 50 liters of lubricant annually. The material is also very resistant to temperature, chemicals, moisture, corrosion, and seawater, which opens up the applications base for its use substantially.
Learn more.


Aerospace fastener hole drilling and countersinking all in one step

Kennametal has introduced the HiPACS drilling and countersinking system for aerospace fastener holes. Designed to drill and chamfer holes in one operation, the high-precision tool meets the aerospace industry's stringent accuracy requirements while delivering increased tool life in machining composite, titanium, and aluminum aircraft skins. With an industry-standard interface, HiPACS can be utilized on any CNC machine. Three components eliminate the need for custom tooling: a reducer sleeve with a built-in high-precision pocket seat, a PCD countersinking insert, and two series of solid carbide drills.
Learn more.


Why precision metrology is critical for electric vehicle gearing

As the shift from internal combustion engines to electric motors in vehicles continues, the number of drivetrain components will dramatically lessen too. The remaining components will be even more critical to a vehicle's operation and longevity. One such area is the gear components necessary to convert the high-force torque from electric motors to the RPMs at the wheel.
By Michael Schmidt, Zygo Corporation
Read the full article.


Master CNC machining tolerances eBook

Need a refresher on the basics of applying tolerances to custom machined metal and plastic parts? In this ebook, Xometry provides some pointers on designing mating parts and parts for specific functions. Chapters include: general machining tolerances, clearance and interference fit, how to avoid over-tolerancing, CAD drawing prep and specs, and an inspection report cheat sheet.
Get this valuable resource from Xometry.


Specifying metal inserts for molded plastics

Teaming with insert manufacturers that offer engineering expertise throughout the design and manufacturing process can be worth its weight in gold. Learn how two OEMs overcame their metal insert challenges by using advice and products from Tri-Star Industries, including specialty stainless steel parts and modifying the knurling on some inserts.
Read the full article.


Posi-Lok keyless shaft bushings for secure shaft-to-hub connection

Zero-Max offers a variety of options within the Posi-Lok keyless shaft bushings (PSL) product line that allow users to rigidly and reliably secure shaft-mounted components into position for optimal operating results in their machines. Options include material choices, plating, and different mounting methods. Posi-Loks are a superior shaft-hub locking solution, eliminating the need for keyways that can weaken or cause excess wear to shaft components. All Posi-Lok models easily slide onto a shaft for mounting and provide reliable, zero-backlash performance.
Learn more.


Automation: ECONOmaster drilling units -- affordable, flexible, get the job done

Suhner's ECONO-master® is a low-cost, high-output automated drilling unit that puts holes in light metal, composite, thermoplastic, and even wood substrates at high speed with excellent accuracy. It features low power and air consumption. On a recent project for Mid-State Engineering, Suhner custom ECONOmaster drill units -- featuring selectable drill heads that can be used in combination or individually -- were used to automatically drill holes into fiberglass panels for truck trailer bodies.
Read the full article.


Great Resources: Ultimate Guide to Injection Molding

Xometry has put together a comprehensive resource for injection molding -- from the basic principles to applications, tooling, materials, design features, and more. Learn how to optimize your part designs and choose the right surface finishes, textures, and post-processing for your projects. A super-handy resource worth bookmarking.
Read the Xometry Ultimate Guide to Injection Molding.


Sealing fasteners may optimize your designs

Highly specialized sealing fasteners include sealing screws, sealing nuts, sealing bolts, and sealing washers. Unlike ordinary fasteners, sealing fasteners are configured with a rubber O-ring (or a rubber element) that, when squeezed, permanently seals out a wide range of contaminants from entering and damaging equipment while preventing leakage of toxins into the environment. ZAGO sealing fasteners are designed to withstand harsh weather and extreme temperatures and are vibration and pressure resistant.
Learn all about ZAGO's wide selection of sealing fasteners.


Spirit levels with adjustment and cross-measurement

They may seem like relics from the past, but spirit levels remain indispensable tools in everyday industrial operations. Two new types from JW Winco now offer even better and faster alignment. The cross spirit levels GN 2276 combine two perpendicular linear levels within a single, round aluminum housing to show the alignment in two planes at once, making installation and leveling easier and faster. The new screw-on spirit levels GN 2283 are used to check the horizontal position of jigs, machines, devices, appliances, and instruments. These are available in a directly mountable, flat version (AV) and as an adjustable version (JV) with an alignment cam.
Learn more.


New cast urethane materials and finishes

Xometry has added new urethane resins and finishes as options for quick and affordable low- to mid-volume production. Urethane casting is used to make end-use, highly durable parts with robust mechanical properties. It is considered a "soft-tooled" process, where a silicone mold is formed around a master pattern -- usually 3D printed. Xometry has materials in two main durometer classes, rigid (Shore D) and rubber-like (Shore A). Finishes include matte/frosted, semi-gloss, high-gloss, and custom.
Read this informative Xometry blog.
Get the Xometry Urethane Casting Design Guide.


New molded-in aluminum threaded inserts for plastics

SPIROL has introduced a new, high-performance series of Molded-In Inserts for plastics assemblies. The rugged design of the Series 63 Through Hole Inserts and Series 65 Blind End Inserts consists of multiple bands of helical knurls to maximize torque resistance, balanced with radial undercuts to achieve high pull-out (tensile) force. These Molded-In Inserts are designed to be placed in the mold cavity prior to plastic injection. They offer exceptional performance due to unrestricted plastic flow into the retention features on the outside diameter of the Inserts.
Learn more.


How to avoid premature linear screw actuator failure

At their core, electric linear screw actuators deploy mechanical technology such as ball bearings, ball screws, and roller screws that have a finite life. These components do not last forever -- even though that is the expectation of some customers. But how long will an actuator really last? Tolomatic engineers provide a way to calculate, estimate, and size the electric linear screw actuator to achieve the desired life for your applications.
Read this informative Tolomatic blog.


3D Printing: Desktop Metal qualifies 316L stainless steel for high-volume manufacturing -- thousands of parts per week

3D-printer machine maker Desktop Metal has qualified the use of 316L stainless steel for its additive manufacturing platform called the Production System, which provides some of the fastest build speeds in the market for mass production and can make thousands of parts per week. This article includes very useful cost-per-part and time-to-manufacture information using five different application examples.
Read the full article.


Like making spaghetti: Brazilian researcher creates an ultra-simple and inexpensive method to fabricate optical fiber

By Jose Tadeu Arantes, APESP Innovative R&D

A novel process to fabricate special optical fiber that is far simpler, faster, and cheaper than the conventional method has been developed by Cristiano Cordeiro, a researcher and professor at the University of Campinas' Physics Institute (IFGW-Unicamp) in the state of Sao Paulo, Brazil.

Cordeiro created the process during a research internship at the University of Adelaide in Australia, supported by a scholarship from FAPESP (The Sao Paulo Research Foundation) and by a partnership with his host, Heike Ebendorff-Heidepriem. An article authored by them and a third collaborator outlining the research is published in Scientific Reports. It is titled, "Ultra-simplified single-step fabrication of microstructured optical fiber."

"The conventional process requires very large and expensive machinery and takes almost a week," said Cordeiro. "Our process can be completed with bench-mounted equipment that's at least 100 times cheaper and takes less than an hour from feedstock to end-product. It will enable many more researchers and labs to produce their own optical fiber."

The procedure roughly resembles the extrusion method used to produce pasta: Pressure is brought to bear on a ductile material to force it through a die, producing fiber with the appropriate inner structure. "Of course, this is all done with much more rigor and precision," Cordeiro said.

Hundreds of millions of miles of optical fiber are installed worldwide, and the amount of data they transport doubles approximately every two years. They are used not only in telecommunications but also for remote sensing to monitor temperature, mechanical stress, hydrostatic pressure, or fluid flow, among many other parameters. Thanks to their strength and thinness, they are effective in hostile environments and barely accessible locations.

These features help explain the importance of innovative fabrication processes. "The conventional process has several stages and requires highly complex equipment, such as a fiber-drawing tower," Cordeiro said. "First, a preform is produced, a giant version of the fiber with a diameter between 2 cm and 10 cm. This structure is heated and drawn in a highly controlled manner by the tower. Mass is conserved and diameter decreases as length increases. Our method simplifies the process at an enormously reduced cost. The device we designed carries out a single continuous process starting with polymer pellets and ending with the finished fiber."

The procedure can be used to fabricate not only all-solid fiber, in which light is transmitted via a core with a higher refractive index, but also microstructured fiber containing an array of longitudinal holes, which enhances control of optical properties and increases functionality -- including the opportunity to guide light with low energy loss in an air channel. To create the microstructures, the researchers used titanium dies with suitable designs.

"To simplify the fabrication of special optical fiber, we deployed equipment and techniques that are becoming more affordable and accessible thanks to the popularization of 3D printing," Cordeiro said. "The only machine required is a compact horizontal extruder similar to the device used to produce filament for 3D printers. It's about the size of a microwave oven and is far less costly than a draw tower. The titanium die with solid parts and holes is coupled to the extruder exit."

Owing to the fiber's intricate inner structure, the researchers produced the dies by additive manufacturing using appropriate 3D printers. Specialist firms can provide additive manufacturing services, so the only item of equipment needed to produce the fiber is the horizontal extruder.

Published September 2020

Rate this article

[Like making spaghetti: Brazilian researcher creates an ultra-simple and inexpensive method to fabricate optical fiber]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2020 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy