![]() |
September 22, 2020 | Volume 16 Issue 36 |
Manufacturing Center
Product Spotlight
Modern Applications News
Metalworking Ideas For
Today's Job Shops
Tooling and Production
Strategies for large
metalworking plants
The SLIC Pin (Self-Locking Implanted Cotter Pin) from Pivot Point is a pin and cotter all in one. This one-piece locking clevis pin is cost saving, fast, and secure. It functions as a quick locking pin wherever you need a fast-lock function. It features a spring-loaded plunger that functions as an easy insertion ramp. This revolutionary fastening pin is very popular and used successfully in a wide range of applications.
Learn more.
How does prolonged exposure to intense UV light impact 3D-printed plastics? Will they fade? This is what Xometry's Director of Application Engineering, Greg Paulsen, set to find out. In this video, Paulsen performs comprehensive tests on samples manufactured using various additive processes, including FDM, SLS, SLA, PolyJet, DLS, and LSPc, to determine their UV resistance. Very informative. Some results may surprise you.
View the video.
Virtual Foundry, the company that brought us 3D-printable lunar regolith simulant, says its popular Copper Filamet™ (not a typo) is "back in stock and ready for your next project." This material is compatible with any open-architecture FDM/FFF 3D printer. After sintering, final parts are 100% pure copper. Also available as pellets. The company says this is one of the easiest materials to print and sinter. New Porcelain Filamet™ available too.
Learn more and get all the specs.
Copper foam from Goodfellow combines the outstanding thermal conductivity of copper with the structural benefits of a metal foam. These features are of particular interest to design engineers working in the fields of medical products and devices, defense systems and manned flight, power generation, and the manufacture of semiconductor devices. This product has a true skeletal structure with no voids, inclusions, or entrapments. A perennial favorite of Designfax readers.
Learn more.
With Xometry's PolyJet 3D-printing service, you can order full-color 3D prints easily. Their no-cost design guide will help you learn about different aspects of 3D printing colorful parts, how to create and add color to your models, and best practices to keep in mind when printing in full color. Learn how to take full advantage of the 600,000 unique colors available in this flexible additive process.
Get the Xometry guide.
Have you ever 3D printed a part that had flat spots or faceted surfaces where smooth curves were supposed to be? You are not alone, and it's not your 3D printer's fault. According to Markforged, the culprit is likely a lack of resolution in the STL file used to create the part.
Read this detailed and informative Markforged blog.
Put your knowledge to the test by trying to answer these key questions on how to choose the right high-temperature-resistant adhesive. The technical experts from Master Bond cover critical information necessary for the selection process, including questions on glass transition temperature and service temperature range. Some of the answers may surprise even the savviest of engineers.
Take the quiz.
One of the primary benefits of using a coiled spring pin to affix a hub or gear to a shaft is the coiled pin's ability to prevent hole damage. Another is the coiled pin absorbs wider hole tolerances than any other press-fit pin. This translates to lower total manufacturing costs of the assembly. However, there are a few design guidelines that must be adhered to in order to achieve the maximum strength of the pinned system and prevent damage to the assembly.
Read this very informative SPIROL article.
Creo Parametric 11.0 is packed with productivity-enhancing updates, and sometimes the smallest changes make the biggest impact in your daily workflows. Mark Potrzebowski, Technical Training Engineer, Rand 3D, runs through the newest functionality -- from improved surface modeling tools to smarter file management and model tree navigation. Videos provide extra instruction.
Read the full article.
Don't settle for ordinary springs. Opt for Rotor Clip wave springs. A wave spring is a type of flat wire compression spring characterized by its unique waveform-like structure. Unlike traditional coil springs, wave springs offer an innovative solution to complex engineering challenges, producing forces from bending, not torsion. Their standout feature lies in their ability to compress and expand efficiently while occupying up to 50% less axial space than traditional compression springs. Experience the difference Rotor Clip wave springs can make in your applications today!
View the video.
JW Winco's printed Standard Parts Handbook is a comprehensive 2,184-page reference that supports designers and engineers with the largest selection of standard parts categorized into three main groups: operating, clamping, and machine parts. More than 75,000 standard parts can be found in this valuable resource, including toggle clamps, shaft collars, concealed multiple-joint hinges, and hygienically designed components.
Get your Standard Parts Handbook today.
Watch Smalley's quick explainer video to see how engineer Frank improved his product designs by switching from traditional coil springs to compact, efficient wave springs. Tasked with making his products smaller while keeping costs down, Frank found wave springs were the perfect solution.
View the video.
You can improve the design and cost of your die cast parts with these top tips from Xometry's Joel Schadegg. Topics include: Fillets and Radii, Wall Thicknesses, Ribs and Metal Savers, Holes and Windows, Parting Lines, and more. Follow these recommendations so you have the highest chance of success with your project.
Read the full Xometry article.
3D Systems unveiled several new solutions at the RAPID+TCT 2025 show in April designed to change the way industries innovate. From new 3D printers and materials for high-mix, low-volume applications to marked improvements in how investment casting can be done, learn what is the state of the art from the original inventors of 3D printing.
Read the full article.
JW Winco has developed a new type of indexing plunger -- GN 824 -- that can independently latch into edges and grooves. This is made possible by a chamfered plunger pin. When the chamfered pin encounters a raised latching geometry, it retracts and then springs back out again once it reaches the latching point. This new indexing plunger can be ordered with axial thread for fastening and a black plastic knob for operating the indexing plunger. In a clever design, the plunger pin can be adjusted by 360 degrees to ensure that it encounters the mating surface perpendicularly. This hardware is well suited for transport frames, mechanisms, or covers that need to be locked in place quickly and securely, especially without the need for manual intervention.
Learn more.
By Jose Tadeu Arantes, APESP Innovative R&D
A novel process to fabricate special optical fiber that is far simpler, faster, and cheaper than the conventional method has been developed by Cristiano Cordeiro, a researcher and professor at the University of Campinas' Physics Institute (IFGW-Unicamp) in the state of Sao Paulo, Brazil.
Cordeiro created the process during a research internship at the University of Adelaide in Australia, supported by a scholarship from FAPESP (The Sao Paulo Research Foundation) and by a partnership with his host, Heike Ebendorff-Heidepriem. An article authored by them and a third collaborator outlining the research is published in Scientific Reports. It is titled, "Ultra-simplified single-step fabrication of microstructured optical fiber."
"The conventional process requires very large and expensive machinery and takes almost a week," said Cordeiro. "Our process can be completed with bench-mounted equipment that's at least 100 times cheaper and takes less than an hour from feedstock to end-product. It will enable many more researchers and labs to produce their own optical fiber."
The procedure roughly resembles the extrusion method used to produce pasta: Pressure is brought to bear on a ductile material to force it through a die, producing fiber with the appropriate inner structure. "Of course, this is all done with much more rigor and precision," Cordeiro said.
Hundreds of millions of miles of optical fiber are installed worldwide, and the amount of data they transport doubles approximately every two years. They are used not only in telecommunications but also for remote sensing to monitor temperature, mechanical stress, hydrostatic pressure, or fluid flow, among many other parameters. Thanks to their strength and thinness, they are effective in hostile environments and barely accessible locations.
These features help explain the importance of innovative fabrication processes. "The conventional process has several stages and requires highly complex equipment, such as a fiber-drawing tower," Cordeiro said. "First, a preform is produced, a giant version of the fiber with a diameter between 2 cm and 10 cm. This structure is heated and drawn in a highly controlled manner by the tower. Mass is conserved and diameter decreases as length increases. Our method simplifies the process at an enormously reduced cost. The device we designed carries out a single continuous process starting with polymer pellets and ending with the finished fiber."
The procedure can be used to fabricate not only all-solid fiber, in which light is transmitted via a core with a higher refractive index, but also microstructured fiber containing an array of longitudinal holes, which enhances control of optical properties and increases functionality -- including the opportunity to guide light with low energy loss in an air channel. To create the microstructures, the researchers used titanium dies with suitable designs.
"To simplify the fabrication of special optical fiber, we deployed equipment and techniques that are becoming more affordable and accessible thanks to the popularization of 3D printing," Cordeiro said. "The only machine required is a compact horizontal extruder similar to the device used to produce filament for 3D printers. It's about the size of a microwave oven and is far less costly than a draw tower. The titanium die with solid parts and holes is coupled to the extruder exit."
Owing to the fiber's intricate inner structure, the researchers produced the dies by additive manufacturing using appropriate 3D printers. Specialist firms can provide additive manufacturing services, so the only item of equipment needed to produce the fiber is the horizontal extruder.
Published September 2020