March 09, 2021 Volume 17 Issue 10

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

M12 connector simplifies sensor and actuator applications

binder USA has announced a new two-piece M12 circular connector that offers versatility with several special features, including a square flange housing for easy assembly and a multi-position, lockable A-coding that supports variable cable installation. The new connectors simplify making secure sensor and actuator connections in applications such as factory automation and robotics.
Learn more.


Thin film resistor for consumer and industrial electronics

Stackpole Electronics' CSRT2512-UP was developed to provide accurate, high-power current sensing for consumer and industrial electronic devices that exceed the capabilities of most 2512 case sizes available in the industry. The AEC-Q200-compliant CSRT2512-UP has unique thin film material properties and processing to provide higher continuous power ratings and higher pulse power ratings than other thin film chip resistors. Benefits include: high performance, high continuous and pulse power handling, and the known high reliability of thin film technology.
Learn more.


Under-$100 Lidar named CES 2022 Innovation Awards Honoree

Cepton Technologies has been named a CES 2022 Innovation Awards Honoree in the Vehicle Intelligence & Transportation category for its Nova product, a miniature, wide-field-of-view lidar sensor for near-range applications. Nova is designed to help minimize perception blind spots to enhance advanced driver assistant systems and autonomous driving capabilities in modern vehicles. It enables high-res 3D imaging to accurately detect small children, on-road objects, protrusions, and road edges. The giant CES 2022 consumer electronics and technology trade runs Jan. 5-8, 2022, in Las Vegas.
Learn more.
See all of the CES 2022 Innovation Awards Honorees.


Resolve EMI and EMC challenges with Ansys

EMA3D Cable solves complex EMI and EMC challenges related to high-intensity radiated fields, lightning strikes, radiated emissions and conducted susceptibility, and other issues. It is being used to build complete models of cars and planes, including every cable. Ansys HFSS is the world's foremost antenna design and modeling tool. Its comprehensive set of solvers allows engineers to address diverse electromagnetic problems ranging in detail and scale from passive integrated circuit components to extremely large-scale EM analyses, such as automotive radar scenes for advanced driver-assistance systems.
Read this informative Ansys blog.


Upgraded mechanical pressure switch portfolio

NOSHOK's new mechanical pressure switch program has been engineered to address a wider range of applications and provide a significantly expanded selection of process and electrical connection options. Each of the four new NOSHOK switch series offers vacuum, low-pressure, and high-pressure options; is CE compliant to suppress RFI, EMI, and ESD; and is RoHS compliant. In addition, NOSHOK has improved its production efficiency and expanded its inventory to better accommodate orders and provide faster delivery.
Learn more.


Highest-rated current inductors for automotive Power over Coax systems

TDK's ADL3225VM inductors are for use in automotive Power over Coax (PoC) systems. Measuring 3.2 x 2.5 x 2.5 mm, they provide a compact solution for designers looking to reduce vehicle weight as manufacturers add more sensors and cameras to accommodate expanding automotive and advanced driver-assistance systems (ADAS) applications. The proprietary structural design and wire winding manufacturing process ensure high impedance over a broad bandpass of 1 MHz up to 1 GHz. The inductors are compliant with AEC-Q200 and achieve the highest-rated current in the industry for the 3225 size.
Learn more.


Advanced circulators overcome mmWave design challenges

As communica-tions providers race to deliver on the potential of 5G, research and design projects are already looking toward 6G and beyond. However, a major hurdle awaits the impending move up the millimeter wave (mmWave) spectrum: a lack of acceptable mmWave components that can offer a wide bandwidth. Micro Harmonics has an answer.
Read the full article.


Antimicrobial switches disinfect themselves

Are switches that disinfect themselves too good to be true? It is possible. Antimicrobial coatings inhibit the growth of microorganisms and even kill them. When applied to switches, this technology is perfectly suited for medical technology, sanitation areas, and the food service industry. All completely sealed switches from SCHURTER (piezoelectric, capacitive, or ToF) are perfectly suited for this coating upgrade, which kills microorganisms effectively by oxidation using photodynamic self-purification technology.
Learn more.


Expanded enclosure A/C inventory

Seifert Systems has completed their warehouse expansion, significantly increasing the types and quantity of enclosure air conditioners available. Air conditioners with popular cooling capacities within 1,000 to 21,000 BTU/hr are in stock and ready to ship. Among these are the Progressive, filterless SlimLine, and Compact Series of enclosure air conditioners as well as thermoelectric coolers. Seifert enclosure air conditioners come with a two-year warranty. SlimLine units are only 4.5 in. deep, and many Progressive units share the same size footprint for easier planning when needed for more than one application.
See what Seifert Systems has to offer.


Reversible-flow fans: Directional flow and speed control in one unit

Orion Fans has launched a series of micro-controller-based, up to IP68-rated, reversible-flow fans. By utilizing PWM signals to control fan speed, the fans provide engineers an innovative solution to some of their most challenging cooling requirements: speed and airflow direction controlled by one fan without supplementing excess wires or circuitry. Reversible-flow fans are a specialty design that enables unique applications. You may be surprised at their versatility.
Learn more.


Cool Tools: Leica RTC360 3D laser scanner -- LIDAR for big jobs

The new Leica RTC360 laser scanner available from Exact Metrology makes 3D reality capture faster than ever before. With a measuring rate of up to 2 million points per sec, colored 3D point clouds can be completed in under 2 min. Automated, targetless field registration and seamless, automated data transfer from site to office reduce time spent in the field. The CAD models are generally used for factory/shop floor layout plans, power plant equipment changeouts, proof dimensioning, and much more. In addition to the 3D model, full spherical HDR imagining is appended directly to the point cloud, giving a photo-realistic effect to the data and allowing for virtual walkthroughs of the areas, shareable markups, geo-referencing, and meta-tagging. So many uses.
Learn more.


Eaton developing suite of 48-V technologies to help vehicle manufacturers meet new global emission regulations

Most vehicles have traditionally operated with a 12-V system, but with tightening fuel economy regulations and new, advanced power-consuming components being added, increasing power needs are driving the move toward 48-V systems.
Read the full article.


igus unveils new sensor for smart plastics predictive maintenance

igus has developed a sensor for its smart plastics software that calculates the remaining service life of energy chains, cables, linear guides, and plain bearings during operation. The i.cee:local sensor optimizes the life of the system, detects faults, allows them to be fixed at an early stage, and allows for maintenance to be planned in advance. This sensor can be integrated via the internet or without IoT connectivity via the local network, depending on customer requirements. Smart plastics sensors monitor abrasion, measure the pull/push force, and provide information about an imminent overload.
Learn more.


Toshiba positively evaluates no-solder connector tech for IOT

Toshiba Electronic Devices & Storage Corp. has developed two connector technologies that allow easy, solder-free assembly of small IoT nodes, which are regarded as essential for realization of the "Trillion-Node Engine," an open-source IoT platform that could connect billions of devices in the future.
Read the full article.


Ouster-Danfoss partner to bring lidar to off-highway vehicles

Ouster sensors will be the first lidar hardware to be offered through the Danfoss PLUS+1 Partner Program, which is engineered to expedite the development process and bring higher quality machines to market faster. This integration is intended for remote machine management, operator assistance, row following, obstacle avoidance, and task automation. The PLUS+1 Partner Program is a select group of companies with complementary products -- including microcontrollers, joysticks, hydraulic pumps, and radar sensors -- that integrate into PLUS+1 systems the same way all Danfoss hardware components do.
Learn more.


10X faster than USB: New data transfer system connects silicon chips with ultra-thin cable

Researchers have developed a data transfer system that pairs high-frequency silicon chips with a polymer cable as thin a strand of hair. [Image: Courtesy of the researchers]

 

 

 

 

By Daniel Ackerman, MIT

Researchers have developed a data transfer system that can transmit information 10 times faster than a USB. The new link pairs high-frequency silicon chips with a polymer cable as thin a strand of hair. The system may one day boost energy efficiency in data centers and lighten the loads of electronics-rich spacecraft.

The research was presented at February's IEEE International Solid-State Circuits Conference. The lead author is MIT's Jack Holloway '03, MNG '04, who completed his PhD in MIT's Department of Electrical Engineering and Computer Science (EECS) last fall and currently works for Raytheon. Co-authors include Ruonan Han, associate professor and Holloway's PhD adviser in EECS, and Georgios Dogiamis, a senior researcher at Intel.

The need for snappy data exchange is clear, especially in an era of remote work. "There's an explosion in the amount of information being shared between computer chips -- cloud computing, the internet, big data. And a lot of this happens over conventional copper wire," says Holloway. But copper wires, like those found in USB or HDMI cables, are power-hungry -- especially when dealing with heavy data loads. "There's a fundamental tradeoff between the amount of energy burned and the rate of information exchanged." Despite a growing demand for fast data transmission (beyond 100 gigabits per second) through conduits longer than a meter, Holloway says the typical solution has been "increasingly bulky and costly" copper cables.

One alternative to copper wire is fiber-optic cable, though that has its own problems. Whereas copper wires use electrical signaling, fiber optics uses photons. That allows fiber optics to transmit data quickly and with little energy dissipation. But silicon computer chips generally don't play well with photons, making interconnections between fiber-optic cables and computers a challenge. "There's currently no way to efficiently generate, amplify, or detect photons in silicon," says Holloway. "There are all kinds of expensive and complex integration schemes, but from an economics perspective, it's not a great solution." So, the researchers developed their own.

The team's new link draws on benefits of both copper and fiber-optic conduits, while ditching their drawbacks. "It's a great example of a complementary solution," says Dogiamis. Their conduit is made of plastic polymer, so it's lighter and potentially cheaper to manufacture than traditional copper cables. But when the polymer link is operated with sub-terahertz electromagnetic signals, it's far more energy efficient than copper in transmitting a high data load. The new link's efficiency rivals that of fiber optic, but it has a key advantage: "It's compatible directly with silicon chips, without any special manufacturing," says Holloway.

The team engineered such low-cost chips to pair with the polymer conduit. Typically, silicon chips struggle to operate at sub-terahertz frequencies. Yet the team's new chips generate those high-frequency signals with enough power to transmit data directly into the conduit. That clean connection from the silicon chips to the conduit means the overall system can be manufactured with standard, cost-effective methods, the researchers say.

The new link also beats out copper in terms of size. "The cross-sectional area of our cable is 0.4 millimeters by a quarter millimeter," says Han. "So, it's super tiny, like a strand of hair." Despite its slim size, it can carry a hefty load of data, since it sends signals over three different parallel channels, separated by frequency. The link's total bandwidth is 105 gigabits per second, nearly an order of magnitude faster than a copper-based USB cable. Dogiamis says the cable could "address the bandwidth challenges, as we see this megatrend toward more and more data."

In future work, Han hopes to make the polymer conduits even faster by bundling them together. "Then the data rate will be off the charts," he says. "It could be one terabit per second, still at low cost."

The researchers suggest "data-dense" applications, like server farms, could be early adopters of the new links, since they could dramatically cut data centers' high energy demands. The link could also be a key solution for the aerospace and automotive industries, which place a premium on small, light devices. One day, the link could replace the consumer electronic cables in homes and offices, thanks to the link's simplicity and speed. "It's far less costly than [copper or fiber-optic] approaches, with significantly wider bandwidth and lower loss than conventional copper solutions," says Holloway. "So, high fives all round."

This research was funded, in part, by Intel, Raytheon, the Naval Research Laboratory, and the Office of Naval Research.

Published March 2021

Rate this article

[10X faster than USB: New data transfer system connects silicon chips with ultra-thin cable]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2021 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy