April 20, 2021 Volume 17 Issue 15

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Unlock cost savings: Revolutionary GAM GPL Gearbox

The GPL planetary gearbox, when paired with your preferred servo motor, delivers a solution that can match the fit and performance of direct drive motors while offering significant cost savings. With <6 arcsec backlash, GAM says this gearbox outperforms all other zero-backlash gearboxes on the market, making it the ideal choice for your applications. Discover how one company realized significant savings by replacing multiple direct drive motors with the GPL gearbox in a modular housing.
Read the GAM application story.


Bosch Rexroth new linear motor modules

Fast, compact, and precise. These properties characterize the new linear motor modules (LMM) with integrated screw-free direct drive from Bosch Rexroth. The axes are available in sizes 140, 180, and 220 mm and feature a zero-backlash direct drive. They complement the existing linear motion technology portfolio as a ready-to-install solution offering excellent value for money. The linear motor modules are available in all sizes with iron-core linear motors. Standard strokes are up to 1,540 mm and forces up to 2,400 N.
Learn all the specs and options.


OnRobot doubles payload capacity of its grippers

OnRobot's new 2FG14 and 3FG25 electrical grippers for heavy-duty, collaborative applications are now launching along with the new machine tending solution AutoPilot powered by D:PLOY, developed in collaboration with Ellison Technologies. The new three-fingered 3FG25 gripper provides users with 25 kg (55.1 lb) of payload power in a compact, all-electric, lightweight form, unlocking the potential of the latest cobots. Ideal for CNC machine tending, the 2FG14 is a lightweight parallel-finger gripper with a payload of 14 kg (30.8 lb). It doubles the payload and gripping force of OnRobot's popular 2FG7 gripper while also providing 30% more total stroke.
Learn more.


Linear guide system corrects misalignments

Bishop-Wisecarver's UtiliTrak® linear guide system includes vee rails for precision and open rails for misalignment float to provide smooth and accurate motion on inaccurate structures. Because precise parallelism is difficult to achieve, it is not uncommon for mounting surfaces to be slightly out of parallel. UtiliTrak's design compensates for mounting errors and does not require absolute parallelism for accurate operation. Genius.
Learn more.


Universal Robots emerges as preferred robotics platform for AI solutions at Automate 2024

At North America's largest automation show (Chicago, May 6-9), cobot pioneer Universal Robots will redefine the frontiers of physical AI, showcasing how the "ChatGPT moment for robots" has arrived in a wide range of applications. Automate attendees will also experience how Universal Robots' newest cobot models, the UR20 and UR30, automate tasks with increased payload, reach, and torque.
Learn more.


Multi-stage mini vacuum pumps: Max performance

Designed to meet the demanding needs of industrial users, the CMS M series mini vacuum pump from COVAL combines robustness, performance, and modularity, offering an optimum solution for applications requiring high suction flow rates, such as gripping porous parts, emptying tanks, or material handling when integrated into vacuum grippers. Thanks to their ultra-compact design and optimized multi-stage Venturi system, these pumps guarantee powerful suction flows up to 19.42 SCFM, while reducing compressed air consumption in a compact footprint.
Learn more.


Choosing a stepper motor: PM or hybrid?

Lin Engineering stepper motors are widely used in various applications that require precise control of motion, such as in robotics, 3D printing, CNC machines, and medical equipment. There are two main types of stepper motors: permanent magnet (PM) and hybrid. Learn the differences, advantages, and when to use one type or the other.
Read this informative Lin Engineering article.


Top Product: Integrated servo system is 20% smaller than standalone unit

Applied Motion Products has introduced the MDX+ series, a family of low-voltage servo systems that integrate a servo drive, motor, and encoder into one package. This all-in-one drive unit is an ideal solution for manufacturers in logistics, AGV, medical, semiconductor, the solar industries, and many others.
Read the full article.


Overhung load adaptors provide load support and contamination protection

Overhung load adaptors (OHLA) provide both overhung radial and axial load support to protect electrified mobile equipment motors from heavy application loads, extending the lifetime of the motor and alleviating the cost of downtime both from maintenance costs and loss of production. They seal out dirt, grime, and other contaminants too. Zero-Max OHLAs are available in an extensive offering of standard models (including Extra-Duty options) for typical applications or customized designs.
Learn more.


Why choose electric for linear actuators?

Tolomatic has been delivering a new type of linear motion technology that is giving hydraulics a run for its money. Learn the benefits of electric linear motion systems, the iceberg principle showing total cost of ownership, critical parameters of sizing, and conversion tips.
Get this informative e-book. (No registration required)


New AC hypoid inverter-duty gearmotors

Bodine Electric Company introduces 12 new AC inverter-duty hypoid hollow shaft gearmotors. These type 42R-25H2 and 42R-30H3 drives combine an all-new AC inverter-duty, 230/460-VAC motor with two hypoid gearheads. When used with an AC inverter (VFD) control, these units deliver maintenance-free and reliable high-torque output. They are ideal for conveyors, gates, packaging, and other industrial automation equipment that demands both high torque and low power consumption from the driving gearmotor.
Learn more.


Next-gen warehouse automation: Siemens, Universal Robots, and Zivid partner up

Universal Robots, Siemens, and Zivid have created a new solution combining UR's cobot arms with Siemens' SIMATIC Robot Pick AI software and Zivid's 3D sensors to create a deep-learning picking solution for warehouse automation and intra-logistics fulfillment. It works regardless of object shape, size, opacity, or transparency and is a significant leap in solving the complex challenges faced by the logistics and e-commerce sectors.
Read the full article.


Innovative DuoDrive gear and motor unit is UL/CSA certified

The DuoDrive integrated gear unit and motor from NORD DRIVE-SYSTEMS is a compact, high-efficiency solution engineered for users in the fields of intralogistics, pharmaceutical, and the food and beverage industries. This drive combines a IE5+ synchronous motor and single-stage helical gear unit into one compact housing with a smooth, easy-to-clean surface. It has a system efficiency up to 92% and is available in two case sizes with a power range of 0.5 to 4.0 hp.
Learn more.


BLDC flat motor with high output torque and speed reduction

Portescap's 60ECF brushless DC slotted flat motor is the newest frame size to join its flat motor portfolio. This 60-mm BLDC motor features a 38.2-mm body length and an outer-rotor slotted configuration with an open-body design, allowing it to deliver improved heat management in a compact package. Combined with Portescap gearheads, it delivers extremely high output torque and speed reduction. Available in both sensored and sensorless options. A great choice for applications such as electric grippers and exoskeletons, eVTOLs, and surgical robots.
Learn more and view all the specs.


Application story: Complete gearbox and coupling assembly for actuator system

Learn how GAM engineers not only sized and selected the appropriate gear reducers and couplings required to drive two ball screws in unison using a single motor, but how they also designed the mounting adapters necessary to complete the system. One-stop shopping eliminated unnecessary components and resulted in a 15% reduction in system cost.
Read this informative GAM blog.


AFRL researchers demonstrate record-breaking RF isolator performance in ultra-compact device

As the Department of the Air Force continues with the unrelenting pursuit of driving down the size, weight, and power of radio frequency (RF) components, the inherent challenges in these types of technologies are compounded. The typical difficulties of making smaller mechanical and physical components, however, are dwarfed by the challenges posed by making the required onboard electronic equipment smaller, lighter, and less power hungry.

Working toward the aim of developing game-changing RF technology, Air Force Research Laboratory scientists led by Dr. Michael Page, with Dr. Piyush Shah and Dr. Derek Bas, recently patented a new tunable RF filter design that can replace the currently used YIG (yttrium iron garnet) based device. Using a layer of piezoelectric material (a material that changes shape when subjected to an electric field) coupled with a very thin film of permanently magnetized material, the new RF filter has a small fraction of the size, weight, power, and cost (SWaP-C) of the older, bulkier, and more expensive technology.

Now the same team of Air Force researchers is leveraging this technology to create "giant nonreciprocity" in similarly small microwave transmission devices.

"The novel device in our work," said Page, "is essentially an RF isolator."

From the left to right: Drs. Derek A. Bas, Piyush J. Shah, and Michael R. Page. In the tweezers, Bas is holding a chip that contains an array of four isolators. A state-of the-art commercial RF isolator has a much greater size and weight than the AFRL device. [Credit: U.S. Air Force photo/Dr. Michael Wolf]

 

 

 

 

An RF isolator is a device that keeps unwanted radio frequency energy from reflecting back into a transmitter. This is an important factor in wireless devices like radar systems -- or even cell phones -- where a common component both sends and receives signals. By forcing the energy's path to move in one direction only, an isolator prevents signal distortion and equipment damage. This single-direction movement is known as "nonreciprocity."

In current technology, nonreciprocity is achieved by using isolators with powerful magnets that create a strong magnetic field. Transmitted or received radio frequency energy is forced to flow in one specific direction only, which is along the direction of the magnetic lines of flux. Although this system works well, its size, weight, and power requirements make it impractical for small platforms.

Page's research team has been working on replacing these bulky, power-hungry components with miniature, energy-efficient devices based on composites of magnetic and piezoelectric materials. Isolators currently in use are about the size of a racquet ball. Not only is the AFRL-developed device one-sixth that size, but it also far exceeds the performance of current isolators.

"The core area of the science of our technology is called acoustically driven ferromagnetic resonance phenomena," said Shah. Research was begun in this field about 10 years ago by a group of German scientists. Looking at the increased number of publications dealing with the subject in the last year alone, Shah is confident that it is getting "significant interest" in the academic community.

Page's team reported on their research in the December 2020 issue of Science Advances, one of six respected, peer-reviewed journals published by the American Association for the Advancement of Science. In their report they explain that versions of their experimental device, an "acoustic isolator," have been under investigation since the 1970s. However, although nonreciprocity has been observed, the observed effect was far too small to be relevant in real-world applications.

In this work, what Page's team has achieved is giant nonreciprocity.

"Until now," said Shah, "the best observed isolation behavior is in the range of 15 to 20 decibels. What we have achieved is closer to 48 to 50 decibels. In our device, the signal is essentially completely blocked when returning or reflected in the opposite direction."

The device's operation is enabled by an intense interaction between the vibrating piezoelectric crystal and the oscillating magnetic material described by the magnetoelastic interaction.

Shah added that this technology is a building block for developing another class of state-of-the-art RF device called a circulator. A circulator is very similar to an isolator in that it ensures the movement of RF signals in one direction only. Shah expects that the team's exploration of an acoustically driven circulator "is on the horizon."

The team is also looking to improve on some other important metrics for their isolators. For example, they are exploring the possibility of using different materials for the device.

"We want to investigate the structure-property relationships of design variables and materials and their impact on the device performance," said Shah.

The choice of materials for the device goes beyond just making it function well. To be useful in the field, it also must be mass produced in a manufacturing setting. Making it from scarce or uncommon materials would make producing the devices more difficult. The advantage of this device's design is that it is based on materials that can be readily and inexpensively mass produced, as well as on acoustic wave technology that has been previously developed for other applications.

The AFRL team recently started working with Sandia National Laboratory. "Sandia has a strong capability in RF acoustic devices," said Shah, "which is a strong complement to our magnetic material and device expertise."

Having recently been awarded a patent for their tunable RF filter, the team has also filed a patent application for their RF isolator.

"The combination of the extremely high isolation in a readily manufacturable and small size package makes this technology very attractive for the next generation of microwave technologies," said Page.

"This has been an area of interest for our branch for several years," added Page. "So far, we have demonstrated the proof of principle in a working device and are working toward refining and extending the applicability of these devices for the warfighter."

Source: U.S. Air Force Research Laboratory

Published April 2021

Rate this article

[AFRL researchers demonstrate record-breaking RF isolator performance in ultra-compact device]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2021 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy