![]() |
June 01, 2021 | Volume 17 Issue 21 |
Manufacturing Center
Product Spotlight
Modern Applications News
Metalworking Ideas For
Today's Job Shops
Tooling and Production
Strategies for large
metalworking plants
The SLIC Pin (Self-Locking Implanted Cotter Pin) from Pivot Point is a pin and cotter all in one. This one-piece locking clevis pin is cost saving, fast, and secure. It functions as a quick locking pin wherever you need a fast-lock function. It features a spring-loaded plunger that functions as an easy insertion ramp. This revolutionary fastening pin is very popular and used successfully in a wide range of applications.
Learn more.
How does prolonged exposure to intense UV light impact 3D-printed plastics? Will they fade? This is what Xometry's Director of Application Engineering, Greg Paulsen, set to find out. In this video, Paulsen performs comprehensive tests on samples manufactured using various additive processes, including FDM, SLS, SLA, PolyJet, DLS, and LSPc, to determine their UV resistance. Very informative. Some results may surprise you.
View the video.
Virtual Foundry, the company that brought us 3D-printable lunar regolith simulant, says its popular Copper Filamet™ (not a typo) is "back in stock and ready for your next project." This material is compatible with any open-architecture FDM/FFF 3D printer. After sintering, final parts are 100% pure copper. Also available as pellets. The company says this is one of the easiest materials to print and sinter. New Porcelain Filamet™ available too.
Learn more and get all the specs.
Copper foam from Goodfellow combines the outstanding thermal conductivity of copper with the structural benefits of a metal foam. These features are of particular interest to design engineers working in the fields of medical products and devices, defense systems and manned flight, power generation, and the manufacture of semiconductor devices. This product has a true skeletal structure with no voids, inclusions, or entrapments. A perennial favorite of Designfax readers.
Learn more.
With Xometry's PolyJet 3D-printing service, you can order full-color 3D prints easily. Their no-cost design guide will help you learn about different aspects of 3D printing colorful parts, how to create and add color to your models, and best practices to keep in mind when printing in full color. Learn how to take full advantage of the 600,000 unique colors available in this flexible additive process.
Get the Xometry guide.
Have you ever 3D printed a part that had flat spots or faceted surfaces where smooth curves were supposed to be? You are not alone, and it's not your 3D printer's fault. According to Markforged, the culprit is likely a lack of resolution in the STL file used to create the part.
Read this detailed and informative Markforged blog.
Put your knowledge to the test by trying to answer these key questions on how to choose the right high-temperature-resistant adhesive. The technical experts from Master Bond cover critical information necessary for the selection process, including questions on glass transition temperature and service temperature range. Some of the answers may surprise even the savviest of engineers.
Take the quiz.
One of the primary benefits of using a coiled spring pin to affix a hub or gear to a shaft is the coiled pin's ability to prevent hole damage. Another is the coiled pin absorbs wider hole tolerances than any other press-fit pin. This translates to lower total manufacturing costs of the assembly. However, there are a few design guidelines that must be adhered to in order to achieve the maximum strength of the pinned system and prevent damage to the assembly.
Read this very informative SPIROL article.
Creo Parametric 11.0 is packed with productivity-enhancing updates, and sometimes the smallest changes make the biggest impact in your daily workflows. Mark Potrzebowski, Technical Training Engineer, Rand 3D, runs through the newest functionality -- from improved surface modeling tools to smarter file management and model tree navigation. Videos provide extra instruction.
Read the full article.
Don't settle for ordinary springs. Opt for Rotor Clip wave springs. A wave spring is a type of flat wire compression spring characterized by its unique waveform-like structure. Unlike traditional coil springs, wave springs offer an innovative solution to complex engineering challenges, producing forces from bending, not torsion. Their standout feature lies in their ability to compress and expand efficiently while occupying up to 50% less axial space than traditional compression springs. Experience the difference Rotor Clip wave springs can make in your applications today!
View the video.
JW Winco's printed Standard Parts Handbook is a comprehensive 2,184-page reference that supports designers and engineers with the largest selection of standard parts categorized into three main groups: operating, clamping, and machine parts. More than 75,000 standard parts can be found in this valuable resource, including toggle clamps, shaft collars, concealed multiple-joint hinges, and hygienically designed components.
Get your Standard Parts Handbook today.
Watch Smalley's quick explainer video to see how engineer Frank improved his product designs by switching from traditional coil springs to compact, efficient wave springs. Tasked with making his products smaller while keeping costs down, Frank found wave springs were the perfect solution.
View the video.
You can improve the design and cost of your die cast parts with these top tips from Xometry's Joel Schadegg. Topics include: Fillets and Radii, Wall Thicknesses, Ribs and Metal Savers, Holes and Windows, Parting Lines, and more. Follow these recommendations so you have the highest chance of success with your project.
Read the full Xometry article.
3D Systems unveiled several new solutions at the RAPID+TCT 2025 show in April designed to change the way industries innovate. From new 3D printers and materials for high-mix, low-volume applications to marked improvements in how investment casting can be done, learn what is the state of the art from the original inventors of 3D printing.
Read the full article.
JW Winco has developed a new type of indexing plunger -- GN 824 -- that can independently latch into edges and grooves. This is made possible by a chamfered plunger pin. When the chamfered pin encounters a raised latching geometry, it retracts and then springs back out again once it reaches the latching point. This new indexing plunger can be ordered with axial thread for fastening and a black plastic knob for operating the indexing plunger. In a clever design, the plunger pin can be adjusted by 360 degrees to ensure that it encounters the mating surface perpendicularly. This hardware is well suited for transport frames, mechanisms, or covers that need to be locked in place quickly and securely, especially without the need for manual intervention.
Learn more.
Researchers from Tokyo University of Science have created a new design approach that optimizes carbon fiber orientation and thickness, producing lighter products. [Credit: Robert Bye on Unsplash]
Carbon is vital to the existence of all living organisms, since it forms the basis of all organic molecules that, in turn, form the basis of all living beings. While that alone is pretty impressive, it has recently found surprisingly novel applications in disciplines such as aerospace and civil engineering with the development of carbon fibers that are stronger, stiffer, and lighter than steel. Consequently, carbon fibers have taken over steel in high-performance products like aircraft, racecars, and sports equipment.
Carbon fibers are usually combined with other materials to form a composite. One such composite material is the carbon fiber reinforced plastic (CFRP), which is well known for its tensile strength, rigidity, and high strength-to-weight ratio. Owing to its high demand, researchers have carried out several studies to improve the strength of CFRPs, and most of these have focused on a particular technique called "fiber-steered design," which optimizes fiber orientation to enhance strength.
However, the fiber-steered design approach is not without its drawbacks. "Fiber-steered design only optimizes orientation and keeps the thickness of the fibers fixed, preventing full utilization of the mechanical properties of CFRP. A weight reduction approach, which allows optimization of fiber thickness as well, has been rarely considered," explains Dr. Ryosuke Matsuzaki from Tokyo University of Science (TUS), Japan, whose research is focused on composite materials.
Against this backdrop, Matsuzaki -- along with his colleagues at TUS (Yuto Mori and Naoya Kumekawa) -- proposed a new design method for optimizing the fiber orientation and thickness simultaneously depending on the location in the composite structure, which allowed them to reduce the weight of the CFRP compared to that of a constant-thickness linear lamination model without compromising its strength. Their findings are in a new study published in Composite Structures.
Their method consists of three steps: the preparatory, iterative, and modification processes. In the preparatory process, an initial analysis was performed using the finite element method (FEM) to determine the number of layers, enabling a qualitative weight evaluation by a linear lamination model and a fiber-steered design with a thickness variation model. The iterative process was used to determine the fiber orientation by the principal stress direction and iteratively calculate the thickness using "maximum stress theory." Finally, the modification process was used to make modifications accounting for manufacturability by first creating a reference "base fiber bundle" in a region requiring strength improvement and then determining the final orientation and thickness by arranging the fiber bundles such that they spread on both sides of the reference bundle.
This method of simultaneous optimization led to a weight reduction greater than 5% while enabling higher load transfer efficiency than that achieved with fiber orientation alone.
The researchers are excited by these results and look forward to the future implementation of their method for further weight reduction of conventional CFRP parts. "Our design method goes beyond the conventional wisdom of composite design, making for lighter aircraft and automobiles, which can contribute to energy conservation and reduction of CO2 emissions," says Matsuzaki.
Source: Tokyo University of Science
Published June 2021