August 03, 2021 Volume 17 Issue 29

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Board-level EMI shielding: DIY in minutes

ProtoShield sheets from Tech-Etch are depth-etched with a checkerboard pattern for folding, so they can be easily formed into many diverse configurations. In the product-development stage, fully functional shields can be created in minutes with just a pair of scissors and a straight edge for folding. Offered in two sizes: standard (.25-in. squares) and metric (5-mm squares). Both versions are solderable and corrosion resistant due to nickel silver material. Shield prototypes can be directly soldered to the board, or shield clips can be used for easy mounting. Samples available.
Learn more.


Isolated probing tech for fast-switching power device testing

Keysight Technologies has developed an optically isolated differential probing family dedicated to enhancing efficiency and performance testing of fast-switching devices such as wide-bandgap GaN and SiC semiconductors. Validation of floating half-bridge and full-bridge architectures commonly used in power conversion, motor drives, and inverters requires measurement of small differential signals riding on high common-mode voltages. This measurement can be challenging due to voltage source fluctuations relative to ground, noise interference, and safety concerns.
Learn more.


Protect sensitive electronics in explosive environments with new aluminum ATEX Cabinet Cooler Systems

EXAIR's ATEX Cabinet Cooler® Systems deliver a powerful and affordable solution for keeping electrical enclosures cool in hazardous ATEX classified areas -- and they're now available in durable aluminum construction. Engineered for use in Zones 2 and 22, these coolers are UL tested, CE compliant, and meet stringent ATEX standards for purged and pressurized enclosures. With cooling capacities up to 5,600 Btu/Hr., ATEX Cabinet Coolers are ideal for preventing overheating in electrical cabinets. EXAIR offers a comprehensive lineup of systems.
Learn more.


PLC handbook chock full of must-know information

Automation-Direct's Practical Guide to Program-mable Logic Controllers Handbook has been improved with tons of new need-to-know info, making it a more comprehensive guide to the world of PLCs. Besides covering the basics of PLC history, PLC hardware, and PLC software, this guide takes you deeper into the ever-changing world of PLC communication, the importance of feedback loops, cyber security, and many other areas that are a must-know for any PLC novice or seasoned automation professional.
Get this great resource today.


Haptic feedback prototyping kit from TDK

Get your customers to feel the difference your products make. TDK has released a development starter kit for fast haptics prototyping. It gives mechanical designers and engineers first impressions of the haptic feedback using PowerHap piezo actuators, shows how the mechanical integration works, and provides a reference design. Applications include automotive, displays and tablets, household appliances, vending machines, game controllers, industrial equipment, and medical devices.
Learn more.


Mini ESD preset torque screwdriver

Need precision fastening with ESD protection at the smallest torque levels? Mountz has you covered. The new FG Mini ESD Preset Torque Screwdriver is built for low-torque, high-precision tasks. Its compact design makes it ideal for tight spaces and small fasteners, while delivering the same reliable control and ESD protection users have come to expect from Mountz. Two models available: FG25z (3 to 25 ozf.in, 2 to 17.7 cN-m) and FG50z (20 to 50 ozf.in, 14.1 to 35.3 cN-m).
Learn more.


Laumas load cells and electronics from AutomationDirect

Automation-Direct has added Laumas precision-engineered load cells, transmitters, and accessories that deliver reliable performance in industrial weighing and force measurement applications. The FCAL series high-precision bending beam load cells are ideal for low- to mid-capacity systems. CTL series load cells are designed for both tension and compression, with excellent linearity. The CBL series low-profile compression load cells are perfect for space-limited applications. Laumas load cell transmitters are available too for precise monitoring and control. Very good pricing.
Learn more.


Engineer's Toolbox: What is ground loop feedback?

Improper grounding can create problems in data logging, data acquisition, and measurement and control systems. One of the most common problems is known as ground loop feedback. Experts at CAS DataLoggers run through five ways to eliminate this problem.
Read the full article.


What is a braking resistor?

According to Automation-Direct, "Braking resistors don't actually provide braking directly -- rather, they allow a drive to stop a loaded motor faster." Why is this important? Protect your AC or DC drive system from regenerative voltage that can create an over-voltage fault on the drive -- especially with high inertial loads or rapid deceleration.
View the video.


New Digital Static Meter: Precise measurement, easy use

Static electricity isn't just a nuisance; it's a serious threat to manufacturing efficiency, product integrity, and workplace safety. Unchecked static can lead to costly downtime, product defects, material jams, and even hazardous shocks to employees. If static is interfering with your processes, EXAIR's upgraded Model 7905 Digital Static Meter offers an essential first step in identifying and eliminating the problem. With just the press of a button, this easy-to-use, handheld device pinpoints the highest voltage areas in your facility, helping you diagnose static issues before they become a problem.
Learn more.


New laser cutting modulating strategy tested with Mikrotron high-speed camera

Modulating a laser beam's intensity distribution optimizes energy delivery to the process zone, resulting in better cutting speed, cut edge quality, and cut kerf geometry. Scientists in Belgium have come up with a new method that they say produces better cutting results.
Read the full article.


All-in-one embedded PLC based on Raspberry Pi 4 -- build control applications

The new PLC CPI-PS10CM4 from Contec Co. is a compact embedded programmable logic controller (PLC) that is loaded with CODESYS, the world's most widely used software PLC. This product uses Contec's original single-board computer, which is based on Raspberry Pi's latest embedded module, the Compute Module 4 (CM4). By using the wide range of peripheral devices for Raspberry Pi, such as Contec's CPI Series, you can build various control applications in a PLC language that complies with the IEC 61131-3 international standard.
Learn more.


Torque sensors for fastening applications and more

Saelig Company has introduced the Sensor Technology SGR525/526 Series Torque Sensors to provide precision torque monitoring that is critical for performance and safety. The square drive design (for applications with non-cylindrical shafts) allows for seamless integration into power tools, test rigs, industrial machinery, and precision fastening applications, ensuring superior torque measurement without the need for additional adapters or modifications. The SGR525 offers torque measurement only, while the SGR526 provides torque, speed, and power measurement using a 360-pulse-per-revolution encoder. Industries include automotive, aerospace, manufacturing, and research and development.
Learn more.


Wide-angle camera optimized for larger, faster conveyor belts

Wider conveyor belts operating at higher speeds are now commonplace in modern logistics. To keep up, SVS-Vistek is offering a cost-effective alternative to multi-camera systems with its fxo901CXGE 10-GigE color camera featuring the Sony IMX901-AQR wide-aspect global shutter 16.4-megapixel CMOS sensor. Unlike standard cameras, this unit captures targets in a wide field of view while maintaining high resolutions. The 4:1 horizontal aspect ratio allows one fxo901CXGE to replace an entire multi-camera system, removing the need for image synchronization.
Learn more.


Handheld thermal imager cuts diagnostic time

The FLIR TG268 is a next-generation thermal imager that provides professionals in the utility, manufacturing, electrical, automotive, and industrial sectors with a lightweight, handheld, affordable condition monitoring tool. Latest enhancements include higher temperature ranges, improved resolution, and larger data storage capacity. Go beyond the restrictions of single-spot IR thermometers to view and evaluate hot and cold spots that may signify potentially dangerous issues. Accurately measure temps from -25 to 400 C. Native thermal images improved with Super Resolution upscaling.
Learn more.


Gaming graphics card allows faster, more precise control of fusion energy experiments

By Sarah McQuate, University of Washington

Nuclear fusion offers the potential for a safe, clean, and abundant energy source.

This process, which also occurs in the sun, involves plasmas (fluids composed of charged particles) being heated to extremely high temperatures so that the atoms fuse together, releasing abundant energy.

One challenge to performing this reaction on Earth is the dynamic nature of plasmas, which must be controlled to reach the required temperatures that allow fusion to happen. Now, researchers at the University of Washington (UW) have developed a method that harnesses advances in the computer gaming industry: It uses a gaming graphics card, or GPU, to run the control system for their prototype fusion reactor.

The team published their results May 11 in Review of Scientific Instruments.

"You need this level of speed and precision with plasmas because they have such complex dynamics that evolve at very high speeds. If you cannot keep up with them, or if you mispredict how plasmas will react, they have a nasty habit of going in the totally wrong direction very quickly," said co-author Chris Hansen, a UW senior research scientist in the aeronautics and astronautics department.

"Most applications try to operate in an area where the system is pretty static. At most, all you have to do is 'nudge' things back in place," Hansen said. "In our lab, we are working to develop methods to actively keep the plasma where we want it in more dynamic systems."


VIDEO: Shown here is a view from inside the reactor: Plasma (bright streams) enters from the injectors on the top of the device and then organizes into a ring around the two cones visible in the middle (view here is from the side of the ring). These plasma streams move very quickly -- this video is only three-thousandths of a second long. [Credit: University of Washington]

The UW team's experimental reactor self-generates magnetic fields entirely within the plasma, making it potentially smaller and cheaper than other reactors that use external magnetic fields.

"By adding magnetic fields to plasmas, you can move and control them without having to 'touch' the plasma," Hansen said. "For example, the northern lights occur when plasma traveling from the sun runs into the Earth's magnetic field, which captures it and causes it to stream down toward the poles. As it hits the atmosphere, the charged particles emit light."

The UW team's prototype reactor heats plasma to about 1 million degrees Celsius (1.8 million degrees Fahrenheit). This is far short of the 150 million degrees Celsius necessary for fusion, but hot enough to study the concept.

Here, the plasma forms in three injectors on the device, and then these combine and naturally organize into a doughnut-shaped object, like a smoke ring. These plasmas last only a few thousandths of a second, which is why the team needed to have a high-speed method for controlling what's happening.

Previously, researchers have used slower or less user-friendly technology to program their control systems. So, the team turned to an NVIDIA Tesla GPU, which is designed for machine learning applications.

"The GPU gives us access to a huge amount of computing power," said lead author Kyle Morgan, a UW research scientist in the aeronautics and astronautics department. "This level of performance was driven by the computer gaming industry and, more recently, machine learning, but this graphics card provides a really great platform for controlling plasmas as well."

Two photos of the team's prototype reactor, showing the three injectors with (bottom) and without (top) the electrical circuits (labeled in green on the right) used to form magnetized plasmas in each injector. The GPU precisely controls each of these circuits, allowing the researchers to fine-tune plasma formation in each injector. [Credit: University of Washington]

 

 

 

 

Using the graphics card, the team could fine-tune how plasmas entered the reactor, giving the researchers a more precise view of what's happening as the plasmas form -- and eventually potentially allowing the team to create longer-living plasmas that operate closer to the conditions required for controlled fusion power.

"The biggest difference is for the future," Hansen said. "This new system lets us try newer, more advanced algorithms that could enable significantly better control, which can open a world of new applications for plasma and fusion technology."

Published August 2021

Rate this article

[Gaming graphics card allows faster, more precise control of fusion energy experiments]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2021 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy