February 08, 2022 Volume 18 Issue 06

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

New rotary microstage includes built-in controller

The new M3-RS-U2-4.5-360 Rotary Smart Stage from New Scale Technologies is a miniature positioning module that simplifies the task of embedding high-precision rotary motion into scientific and industrial instruments. The latest addition to the M3 Smart Stage family provides point-to-point angular positioning with closed-loop resolution better than 0.022 degrees. M3 Smart Stages integrate piezoelectric motors, position sensors, and built-in controllers in compact modules that accept direct digital input from a system processor.
Learn more.


New high-performance hollow shaft gear unit for heavy-duty applications

Harmonic Drive has released its HPF series of hollow shaft gear units designed for heavy-duty industrial applications. These advanced gear units offer high torque outputs and flexible installation options, and they provide exceptional torque density and positional accuracy. Industrial applications include robotics, packaging, and material handling.
Learn more and get all the specs.


Totally new! Hybrid stepper and PM motor

The Hybrid-PM-Mix (HPM) from Lin Engineering is the first motor of its kind, combining the stator of a hybrid stepper and the rotor of a PM motor in the form factor of a high-speed BLDC. The result is a motor that behaves like a typical high-speed BLDC with the added benefits of hybrid steppers -- precise position control and position holding -- with low noise and vibration too. The 1330 Series is a small motor with a frame size of just 13 mm, which is perfect for small applications with minimal space.
Find out all the specs.


New magnetic tracks for linear motors -- more force with no redesign

The MWD+ is a new family of magnetic tracks from ETEL equipped with stronger magnets. These tracks are compatible with any existing ETEL LMG and LMS linear motor, enabling an average of 15% higher continuous and peak force compared to existing MWD products. Benefits include higher force density per unit volume, which allows users to improve the overall duty cycle or run a given duty cycle at lower temperatures.
Learn more about ETEL linear motors.


maxon adds dynamism to robotic drives

Innovative motor concepts are the answer to growing market requirements for dynamic response, compactness, and power density. With the EC frameless DT, maxon presents a solution that really packs a punch. The DT50 with matching encoder is the precursor of a new product family developed specifically for dynamic movements like those in robotics. The brushless motor with its frameless concept can be easily integrated into a wide range of applications by design engineers in applications where speeds can change in an instant. When installed, the EC frameless DT50 effortlessly reaches a nominal torque of over 500 mNm at a nominal speed of 4,000 rpm.
Learn more.


Better conveyors for automotive assembly lines

The Torque Arm Conveyor Drive is a more energy-efficient and maintenance-friendly replacement for the legacy "Floating Frame" conveyor drives used in many automotive assembly lines. Developed by OCC Systems, it features a custom-built gearbox solution with an Overhead Conveyor Drive gear unit from NORD DRIVESYSTEMS. This new drive concept contains far fewer parts, has a modular and maintenance-friendly construction, and comes with a built-in back-up system.
Read the full article.


Robot handles precision masking tape application for aerospace

Engineers from Aerobotix and FerRobotics have developed an impressive End of Arm Tooling system that provides smooth masking on parts varying in shape and puts down precise tape lines where the customer needs them -- even on intricate curvy paths. You've got to see it in action.
Read the full article.


Linear robots are now even more versatile

Bosch Rexroth has expanded its portfolio of linear robots (eight different axis combinations with 68 sizes!) for various applications in factory automation. The much wider range of working areas and loads makes the Cartesian subsystems also suitable for applications like battery handling or intralogistics. Predefined axis combinations make for quick and easy sizing and selection. Configure and finalize online and order as preassembled subsystems -- optionally with controllers. Each multi-axis system is also available as a Smart Function Kit for handling or dispensing. Preinstalled software allows for fast commissioning and intuitive programming.
Learn more about Bosch Rexroth smart mechatronic systems.


Selecting linear actuators for robotics

Nick Novotny over at Nook Industries has put together a handy and very useful short guide on selecting linear actuators for robotic applications. Besides addressing the primary considerations, he also explains motor types, linear actuator types, modularity, and advantages and disadvantages.
Read this informative Nook Industries blog.


5 key considerations for selecting a propulsion motor

Josh Jennings, mobile servo motor and drive applications engineer for Parker Hannifin's Hydraulic Pump and Power Systems Division, runs through the key factors to consider for a vehicle electrification project, including how the motor is cooled, its speed range, flexibility, efficiency, and reliability. Solid basic information.
Read the full Parker blog.


New mini planetary gearmotors

New PH Series Mini Planetary Gearmotors from Applied Motion Products are used with small step motors in NEMA 8, 11, and 14 frame sizes. These gearmotors are used in applications where space is critical. Small motors usually don't produce enough torque for demanding applications. Mini Planetary Gearmotors are an ideal solution. They offer an increase in torque and better inertia matching without breaking the budget.
Learn more and see all the options offered by Electromate.


New cobot welders with extended range unveiled at FABTECH 2022

Universal Robots has grown its welding application segment more than 80% this year as partners develop new capabilities for the pioneering cobot welders. At FABTECH last week, Universal Robots' booth showcased new solutions from Vectis Automation and Hirebotics, enabling the weldment of larger and more complex parts. Attendees also experienced Precision Cobotics' automated MECCO laser-marking solution with Apera AI bin picking, laser welding with Cobot Systems, metal deburring with Kane Robotics, along with the new UR20 cobot in a machine-tending application.
Learn about the new welding options and other UR FABTECH releases.


New! Multi-axis gantry attachment kits extend your working envelope

Multi-axis linear actuator assemblies from Bishop-Wisecarver extend the working envelope of automated motion systems and provide for more complex motion. ECO60 Gantry Kits create reliable and easy-to-assemble connections between ECO60 Linear Actuators. Benefits include: saving design time without sacrificing design freedom, easy ordering with single-part-number kits, and fast and simple assembly and installation. All multi-axis kits are made from aluminum with black anodize and stainless-steel hardware.
Learn more.


Robots handle post processing for metal AM parts and components

The NetShape Robot from Rivelin Robotics provides an automated solution for metal support removal and targeted finishing to meet the standards of mission-critical industries. Driven by the powerful NetShape control software, both machine learning and traditional deterministic control theory are used to optimize the quality and repeatability of the work. The result is an automated support-removal solution that reduces defects by 90%, exhibits a 10-fold reduction in operational costs, and eliminates human risk and variability.
Learn more.


Flat external rotor with encoder

The DF45 brushless DC motors from Nanotec are now available with an integrated encoder. The new flat motors with a diameter of only 45 mm are ideal for applications that require precise positioning in confined spaces such as AGV wheel drives, access control systems, and door drives. The two-channel encoder has a resolution of 1,024 CPR and provides additional Hall signals for commutation. The difference in length between the standard motor and the encoder version is only 2 mm, as the encoder has been completely integrated. The DF45-E has a rated power of 65 W at a rated speed of 4,840 rpm. Custom windings or shafts are also available.
Learn more.


Ammonia for plane fuel: UCF to lead $10m NASA project to develop zero-carbon jet engines

The University of Central Florida (UCF) is developing new technology that is expected to make airplane engines emission-free, an effort that could potentially revolutionize the aviation industry.

UCF put together a team of experts and stakeholders to evaluate their innovation, which aims to not only make aviation fuel green, but also create engines and fueling systems that easily integrate into current airport infrastructure, thus saving airports and aircraft manufacturers millions of dollars as they look to retrofit.

"We don't want to create something that will be too cumbersome and expensive to implement," said lead investigator and UCF Engineering Professor Jay Kapat. "If we want people to adopt this green tech, it needs to be scalable. To adopt hydrogen, for example, we can't expect every airport to set up large cryogenic liquid hydrogen systems like Kennedy Space Center. That's unreasonable."

With this practical approach, Kapat put together a team of experts from UCF, Georgia Tech, and Purdue and industry experts from Boeing, General Electric, ANSYS, Southwest Research Institute, and the Greater Orlando Aviation Authority. The team landed a $10 million five-year NASA University Leadership Initiative grant to get the ball rolling.

"We have a good concept," Kapat said, "and by having our partners in industry, we know we'll fine-tune and be ready for technology transition, so we can provide a greener future for our children."

The technology
Kapat and several of his UCF colleagues in engineering and the Florida Space Institute propose using liquid ammonia (NH3) as the fuel for aircraft which, upon combustion, will produce harmless emissions that are green while still providing enough power to keep the aircraft aloft. At high altitudes, ammonia is naturally liquid, thereby limiting the need for special handling. Airports and airplanes are expected to store the ammonia in fuel tanks. Ammonia is commonly used as a fertilizer and, when mixed with water, in some household cleaners.

Ammonia will be the hydrogen carrier, which will be catalytically "cracked" to release nitrogen and hydrogen. The hydrogen will be burned in the onboard combustors (inside the engine) to provide the power. Airports and aircraft are expected to store the NH3 in fuel tanks. Excess NH3 will then be used to catalytically reduce any NOx left in the exhaust, converting it to nitrogen and water.

When the hydrogen is released, there will be an added bonus, Kapat explained. The conversion process also provides cooling, which can be used to keep engines from overheating and burning out. The impact may be better engine performance and efficiency. Engine exhaust heat is then converted back to electricity for onboard use, thus reducing power draw from the core engines.

The team also is developing new components for jet engines to be used in conjunction with the new fuel. The team is using the 737-8 class plane for a baseline, because it represents nearly a quarter of all commercial aircraft, according to Boeing.

The team
Catalyst development and improvement of known catalysis pathways are key to the UCF effort and will be undertaken in Professor Richard Blair's laboratory at the Florida Space Institute. Engineering Professor Subith Vasu will lead the efforts to design tools, computer models, and combustion testing from his lab. Professor Kapat will lead a team that will conduct thermal management and system integration at UCF's Center for Advanced Turbomachinery and Energy Research (CATER), which he leads. UCF Chemical Safety and Security Coordinator Sandra Hick will oversee safety and occupational health issues that are central to any use of ammonia and hydrogen.

Georgia Tech will provide its aviation simulation expertise, and Purdue is providing some of its unique labs and expertise in combustion and aerodynamics.

Boeing is providing the integration know-how to the aircraft, and GE is contributing its knowledge of jet engines. Other industry partners are advising on large-scale simulation, the feasibility of the technology in the real world, and providing a pathway for technology transition. Student training and workforce development are also key aspects of the overall project. Several UCF students working under faculty in the various labs will contribute to the research.

Source: University of Central Florida

Published February 2022

Rate this article

[Ammonia for plane fuel: UCF to lead $10m NASA project to develop zero-carbon jet engines]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2022 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy