March 08, 2022 | Volume 18 Issue 10 |
Manufacturing Center
Product Spotlight
Modern Applications News
Metalworking Ideas For
Today's Job Shops
Tooling and Production
Strategies for large
metalworking plants
Southco has launched the E3 Compact MIM compression latch, bringing new ergonomic and safety features to its durable family of latches in a low-profile package. The E3 Compact MIM compression latch is metal injection molded and has a shorter head (4 mm vs. the normal 6.4 mm), 180-degree ergonomic actuation, and visual indicators machined into the latch and color coded to easily show when it is open or closed. Features a sleek, low-profile, polished look.
Learn more.
What is the right seal for my application? The Sealing & Shielding Team at Parker Hannifin is looking to help you out in this blog. Learn some basics and possible modifications, including application and manufacturing considerations, gland options, mating hardware, and more. They are always very helpful over there at Parker.
Read the Parker blog.
EXAIR's Adjustable Spot Cooler System offers a low-cost, reliable, and maintenance-free solution for industrial spot cooling needs. This tool offers precision control, versatility, and ease of use for a variety of applications including milling, machining, soldering, gas sampling, welding, and more. Utilizing cool and clean compressed air, the Spot Cooler allows users to precisely adjust temperatures from as low as -30°F (-34°C) to room temperature with the simple turn of a knob.
Learn more.
From the watch dial on your wrist to a wind turbine, no application is too small or too big for a Smalley retaining ring to secure. Light to heavy-duty loads? Carbon steel to exotic materials? No problem. See how retaining rings are used in slip clutches, bike locks, hip replacements, and even the Louvre Pyramid.
See the Smalley design applications.
Built on Formlabs' next-generation Low Force Display print engine, the new Form 4L SLA 3D printer delivers unmatched reliability with a 99% print success rate compared to other SLA 3D printers. These benefits, combined with a build volume nearly 5x the size of Form 4, allow Form 4L users to solve big problems and print smaller parts at high volume. Large-scale prints finished in under six hours.
Learn more.
The last couple of major releases of SOLIDWORKS each introduced significant new Assembly modeling features and workflows. Want to know what's new? Catch up on what you might have missed out on since your last upgrade -- and get a first look at highlights from the upcoming SOLIDWORKS 2025. Some very useful changes!
View the video.
3D-printing materials just keep getting better -- and now there are more choices than ever. Watch as Walter Voit, SVP Polymer Materials, Desktop Metal, describes the 3D printing of DuraChain Elastic ToughRubber photopolymers, which produce tough and resilient end-use parts while eliminating the need for a two-part resin. DuraChain photopolymers also demonstrate a long pot life of roughly one year, depending on environmental conditions, making them more suitable for volume production and reducing waste from spoiled, unused material. These materials are offered exclusively on the ETEC Xtreme 8K top-down DLP systems. ETEC is a wholly-owned subsidiary of Desktop Metal.
Learn about this exciting material.
Learn about the ETEC Xtreme 8K DLP systems -- and what makes them so much better.
THK has developed its best-performing, high-speed rotary bearing ever: the High-Speed, Double-Row Angular Contact Ring BWH. This rotary bearing has balls aligned inside a cage between the inner and outer rings and is part of the THK Rotary Series, along with the cross-roller ring. The main features of this product are its ability to receive loads in all directions as well as its high rigidity and rotational accuracy, which are equal to that of cross-roller rings. By adopting a new structure to change the rolling elements from rollers to balls, this product achieves the greatest high-speed performance ever offered by THK.
Learn more.
Ruland Manufacturing has expanded its jaw coupling line to meet the demands of high-torque applications, now offering bore sizes up to 1-3/4 in. or 45 mm and torque capacities of 2,655 in.-lb (300 Nm). Target uses are in precision systems with high deceleration and acceleration curves, such as semiconductor, solar, conveyor, and warehouse automation applications. Features include zero-backlash, industry-leading misalignment capabilities, and a balanced design that reduces vibration at speeds up to 8,000 rpm.
Learn more.
Can you get a design and functional edge with a wedge? In this animated video, Nord-Lock explains the principle behind their original wedge-locking technology, which secures bolted joints even when exposed to severe vibration and dynamic loads. The company says it is impossible for this washer type to loosen unintentionally, due to the wedge created underneath the bolt head and nut.
View the video.
Copper foam from Goodfellow combines the outstanding thermal conductivity of copper with the structural benefits of a metal foam. These features are of particular interest to design engineers working in the fields of medical products and devices, defense systems and manned flight, power generation, and the manufacture of semiconductor devices. This product has a true skeletal structure with no voids, inclusions, or entrapments. A perennial favorite of Designfax readers.
Learn more.
Rotor Clip has just launched its new, patented InterShim™ Wave Spring design, which has been engineered for high-acceleration electric motor applications. It features alternating turns between inactive (flat) and active (waved) turns to ensure reliable performance under torsional loads and precise rotational movement. The highly customizable wave spring's advanced design addresses physical challenges such as extreme forces and vibrations, making it a versatile solution for high-speed and high-stress applications across various industries.
Learn more.
Xometry's just-launched downloadable Laser Tube Cutting and Tube Bending Design Guide covers design tips and tricks for cutting parts, including minimums, tolerances, and sizes. The guide also covers important rules for mandrel tube bending, like tolerancing, distance between bends, and bends to avoid. Interested in even more in-depth information? Watch the corresponding on-demand webinar, which introduces how Xometry is bringing AI and machine learning to provide instant pricing and lead time on tube bending and cutting to its Instant Quoting Engine.
Get the guide. No registration required.
Watch the extended Best Practices webinar.
A new additive manufacturing material from Stratasys and BASF is aimed at driving greater part quality, versatility, and cost efficiency. SAF™ PP is recognized for its exceptional chemical resistance and airtight capabilities, making it the ultimate choice for complex applications across various industries. It can also be welded to other polypropylene components.
Read the full article.
The new CFL Series cam follower from IKO International boasts a unique, space-saving outer ring design and polymer layer that exceeds the capabilities of conventional resin-type cam followers. Many conventional cam followers press-fit a layer of resin onto the unit's standard outer ring to maintain radial load capacity and provide quiet, clean, and durable operation. However, this thicker assembly makes it difficult to fit into constrained spaces. The CFL Series significantly improves on this design with a polymer layer that is molded directly onto the IKO exclusive thin-walled steel outer ring. This construction solves the dilemma of being able to install a cam follower with special polymers, offering self-lubricating and shock-absorbing properties into existing applications.
Learn more.
The material could replace rare metals and lead to more economical production of carbon-neutral fuels.
By David L. Chandler, MIT
An electrochemical reaction that splits apart water molecules to produce oxygen is at the heart of multiple approaches aiming to produce alternative fuels for transportation. However, this reaction has to be facilitated by a catalyst material, and today's versions require the use of rare and expensive elements such as iridium, limiting the potential of such fuel production.
Now, researchers at MIT and elsewhere have developed an entirely new type of catalyst material, called a metal hydroxide-organic framework (MHOF), which is made of inexpensive and abundant components. The family of materials allows engineers to precisely tune the catalyst's structure and composition to the needs of a particular chemical process, and it can then match or exceed the performance of conventional, more expensive catalysts.
The findings are described in the journal Nature Materials in a paper by MIT postdoc Shuai Yuan, graduate student Jiayu Peng, Professor Yang Shao-Horn, Professor Yuriy Román-Leshkov, and nine others.
Oxygen evolution reactions are one of the reactions common to the electrochemical production of fuels, chemicals, and materials. These processes include the generation of hydrogen as a byproduct of the oxygen evolution, which can be used directly as a fuel or undergo chemical reactions to produce other transportation fuels; the manufacture of ammonia, for use as a fertilizer or chemical feedstock; and carbon dioxide reduction in order to control emissions.
But without help, "these reactions are sluggish," Shao-Horn says. "For a reaction with slow kinetics, you have to sacrifice voltage or energy to promote the reaction rate." Because of the extra energy input required, "the overall efficiency is low. So that's why people use catalysts," she says, as these materials naturally promote reactions by lowering energy input.
But until now, these catalysts "are all relying on expensive materials or late transition metals that are very scarce, for example iridium oxide, and there has been a big effort in the community to find alternatives based on Earth-abundant materials that have the same performance in terms of activity and stability," Román-Leshkov says. The team says they have found materials that provide exactly that combination of characteristics.
Other teams have explored the use of metal hydroxides, such as nickel-iron hydroxides, Román-Leshkov says. But such materials have been difficult to tailor to the requirements of specific applications. Now, though, "the reason our work is quite exciting and quite relevant is that we've found a way of tailoring the properties by nanostructuring these metal hydroxides in a unique way."
The team borrowed from research that has been done on a related class of compounds known as metal-organic frameworks (MOFs), which are a kind of crystalline structure made of metal oxide nodes linked together with organic linker molecules. By replacing the metal oxide in such materials with certain metal hydroxides, the team found, it became possible to create precisely tunable materials that also had the necessary stability to be potentially useful as catalysts.
"You put these chains of these organic linkers next to each other, and they actually direct the formation of metal hydroxide sheets that are interconnected with these organic linkers, which are then stacked, and have a higher stability," Román-Leshkov says. This has multiple benefits, he says, by allowing a precise control over the nanostructured patterning, allowing precise control of the electronic properties of the metal, and also providing greater stability, enabling them to stand up to long periods of use.
Illustration depicts an electrochemical reaction, splitting water molecules (at right, with oxygen atom in red, and two hydrogen atoms in white) into oxygen molecules (at left), taking place within the structure of the team's metal hydroxide organic frameworks, depicted as the lattices at top and bottom. [Credit: Image courtesy of the researchers]
In testing such materials, the researchers found the catalysts' performance to be "surprising," Shao-Horn says. "It is comparable to that of the state-of-the-art oxide materials catalyzing for the oxygen evolution reaction."
Being composed largely of nickel and iron, these materials should be at least 100 times cheaper than existing catalysts, they say, although the team has not yet done a full economic analysis.
This family of materials "really offers a new space to tune the active sites for catalyzing water splitting to produce hydrogen with reduced energy input," Shao-Horn says, to meet the exact needs of any given chemical process where such catalysts are needed.
The materials can provide "five times greater tunability" than existing nickel-based catalysts, Peng says, simply by substituting different metals in place of nickel in the compound. "This would potentially offer many relevant avenues for future discoveries." The materials can also be produced in extremely thin sheets, which could then be coated onto another material, further reducing the material costs of such systems.
So far, the materials have been tested in small-scale laboratory test devices, and the team is now addressing the issues of trying to scale up the process to commercially relevant scales, which could still take a few years. But the idea has great potential, Shao-Horn says, to help catalyze the production of clean, emissions-free hydrogen fuel, so that "we can bring down the cost of hydrogen from this process while not being constrained by the availability of precious metals. This is important, because we need hydrogen production technologies that can scale."
The research team included others at MIT, Stockholm University in Sweden, SLAC National Accelerator Laboratory, and the Institute of Ion Beam Physics and Materials Research in Dresden, Germany. The work was supported by the Toyota Research Institute.
Published March 2022