![]() |
April 19, 2022 | Volume 18 Issue 15 |
Manufacturing Center
Product Spotlight
Modern Applications News
Metalworking Ideas For
Today's Job Shops
Tooling and Production
Strategies for large
metalworking plants
Keysight Technologies has developed an optically isolated differential probing family dedicated to enhancing efficiency and performance testing of fast-switching devices such as wide-bandgap GaN and SiC semiconductors. Validation of floating half-bridge and full-bridge architectures commonly used in power conversion, motor drives, and inverters requires measurement of small differential signals riding on high common-mode voltages. This measurement can be challenging due to voltage source fluctuations relative to ground, noise interference, and safety concerns.
Learn more.
EXAIR's ATEX Cabinet Cooler® Systems deliver a powerful and affordable solution for keeping electrical enclosures cool in hazardous ATEX classified areas -- and they're now available in durable aluminum construction. Engineered for use in Zones 2 and 22, these coolers are UL tested, CE compliant, and meet stringent ATEX standards for purged and pressurized enclosures. With cooling capacities up to 5,600 Btu/Hr., ATEX Cabinet Coolers are ideal for preventing overheating in electrical cabinets. EXAIR offers a comprehensive lineup of systems.
Learn more.
Automation-Direct's Practical Guide to Program-mable Logic Controllers Handbook has been improved with tons of new need-to-know info, making it a more comprehensive guide to the world of PLCs. Besides covering the basics of PLC history, PLC hardware, and PLC software, this guide takes you deeper into the ever-changing world of PLC communication, the importance of feedback loops, cyber security, and many other areas that are a must-know for any PLC novice or seasoned automation professional.
Get this great resource today.
Get your customers to feel the difference your products make. TDK has released a development starter kit for fast haptics prototyping. It gives mechanical designers and engineers first impressions of the haptic feedback using PowerHap piezo actuators, shows how the mechanical integration works, and provides a reference design. Applications include automotive, displays and tablets, household appliances, vending machines, game controllers, industrial equipment, and medical devices.
Learn more.
Need precision fastening with ESD protection at the smallest torque levels? Mountz has you covered. The new FG Mini ESD Preset Torque Screwdriver is built for low-torque, high-precision tasks. Its compact design makes it ideal for tight spaces and small fasteners, while delivering the same reliable control and ESD protection users have come to expect from Mountz. Two models available: FG25z (3 to 25 ozf.in, 2 to 17.7 cN-m) and FG50z (20 to 50 ozf.in, 14.1 to 35.3 cN-m).
Learn more.
Automation-Direct has added Laumas precision-engineered load cells, transmitters, and accessories that deliver reliable performance in industrial weighing and force measurement applications. The FCAL series high-precision bending beam load cells are ideal for low- to mid-capacity systems. CTL series load cells are designed for both tension and compression, with excellent linearity. The CBL series low-profile compression load cells are perfect for space-limited applications. Laumas load cell transmitters are available too for precise monitoring and control. Very good pricing.
Learn more.
Improper grounding can create problems in data logging, data acquisition, and measurement and control systems. One of the most common problems is known as ground loop feedback. Experts at CAS DataLoggers run through five ways to eliminate this problem.
Read the full article.
According to Automation-Direct, "Braking resistors don't actually provide braking directly -- rather, they allow a drive to stop a loaded motor faster." Why is this important? Protect your AC or DC drive system from regenerative voltage that can create an over-voltage fault on the drive -- especially with high inertial loads or rapid deceleration.
View the video.
Static electricity isn't just a nuisance; it's a serious threat to manufacturing efficiency, product integrity, and workplace safety. Unchecked static can lead to costly downtime, product defects, material jams, and even hazardous shocks to employees. If static is interfering with your processes, EXAIR's upgraded Model 7905 Digital Static Meter offers an essential first step in identifying and eliminating the problem. With just the press of a button, this easy-to-use, handheld device pinpoints the highest voltage areas in your facility, helping you diagnose static issues before they become a problem.
Learn more.
Modulating a laser beam's intensity distribution optimizes energy delivery to the process zone, resulting in better cutting speed, cut edge quality, and cut kerf geometry. Scientists in Belgium have come up with a new method that they say produces better cutting results.
Read the full article.
The new PLC CPI-PS10CM4 from Contec Co. is a compact embedded programmable logic controller (PLC) that is loaded with CODESYS, the world's most widely used software PLC. This product uses Contec's original single-board computer, which is based on Raspberry Pi's latest embedded module, the Compute Module 4 (CM4). By using the wide range of peripheral devices for Raspberry Pi, such as Contec's CPI Series, you can build various control applications in a PLC language that complies with the IEC 61131-3 international standard.
Learn more.
Saelig Company has introduced the Sensor Technology SGR525/526 Series Torque Sensors to provide precision torque monitoring that is critical for performance and safety. The square drive design (for applications with non-cylindrical shafts) allows for seamless integration into power tools, test rigs, industrial machinery, and precision fastening applications, ensuring superior torque measurement without the need for additional adapters or modifications. The SGR525 offers torque measurement only, while the SGR526 provides torque, speed, and power measurement using a 360-pulse-per-revolution encoder. Industries include automotive, aerospace, manufacturing, and research and development.
Learn more.
Wider conveyor belts operating at higher speeds are now commonplace in modern logistics. To keep up, SVS-Vistek is offering a cost-effective alternative to multi-camera systems with its fxo901CXGE 10-GigE color camera featuring the Sony IMX901-AQR wide-aspect global shutter 16.4-megapixel CMOS sensor. Unlike standard cameras, this unit captures targets in a wide field of view while maintaining high resolutions. The 4:1 horizontal aspect ratio allows one fxo901CXGE to replace an entire multi-camera system, removing the need for image synchronization.
Learn more.
The FLIR TG268 is a next-generation thermal imager that provides professionals in the utility, manufacturing, electrical, automotive, and industrial sectors with a lightweight, handheld, affordable condition monitoring tool. Latest enhancements include higher temperature ranges, improved resolution, and larger data storage capacity. Go beyond the restrictions of single-spot IR thermometers to view and evaluate hot and cold spots that may signify potentially dangerous issues. Accurately measure temps from -25 to 400 C. Native thermal images improved with Super Resolution upscaling.
Learn more.
Find out what's new in SOLIDWORKS 2025 when it comes to sheet metal and weldments, and learn some valuable tips and tricks along the way from TriMech. Topics covered include copying cut list properties, bend notches, tab and slot enhancements, groove beads (a new type of weld bead), performance enhancements, and more. When you're done, check out TriMech's full YouTube channel filled with educational material.
View the video.
Magnetism, one of the oldest technologies known to humans, is at the forefront of new-age materials that could enable next-generation lossless electronics and quantum computers. Researchers led by Penn State and the University of California, San Diego have discovered a new "knob" to control the magnetic behavior of one promising quantum material, and the findings could pave the way toward novel, efficient, and ultra-fast devices.
"The unique quantum mechanical make-up of this material -- manganese bismuth telluride -- allows it to carry lossless electrical currents, something of tremendous technological interest," said Hari Padmanabhan, who led the research as a graduate student at Penn State. "What makes this material especially intriguing is that this behavior is deeply connected to its magnetic properties. So, a knob to control magnetism in this material could also efficiently control these lossless currents."
Manganese bismuth telluride, a 2D material made of atomically thin stacked layers, is an example of a topological insulator, exotic materials that simultaneously can be insulators and conductors of electricity, the scientists said. Importantly, because this material is also magnetic, the currents conducted around its edges could be lossless, meaning they do not lose energy in the form of heat. Finding a way to tune the weak magnetic bonds between the layers of the material could unlock these functions.
Tiny vibrations of atoms, or phonons, in the material may be one way to achieve this, the scientists reported April 8 in the journal Nature Communications.
"Phonons are tiny atomic wiggles -- atoms dancing together in various patterns, present in all materials," Padmanabhan said. "We show that these atomic wiggles can potentially function as a knob to tune the magnetic bonding between the atomic layers in manganese bismuth telluride."
The scientists at Penn State studied the material using a technique called magneto-optical spectroscopy, shooting a laser onto a sample of the material and measuring the color and intensity of the reflected light, which carries information on the atomic vibrations. The team observed how the vibrations changed as they altered the temperature and magnetic field.
As they altered the magnetic field, the scientists observed changes in the intensity of the phonons. This effect is due to the phonons influencing the weak inter-layer magnetic bonding, the scientists said.
"Using temperature and magnetic field to vary the magnetic structure of the material, much like using a refrigerator magnet to magnetize a needle compass -- we found that the phonon intensities were strongly correlated with the magnetic structure," said Maxwell Poore, graduate student at UC San Diego, and co-author of the study. "Pairing these findings with theoretical calculations, we inferred that these atomic vibrations modify the magnetic bonding across layers of this material."
Scientists at UC San Diego conducted experiments to track these atomic vibrations in real time. The phonons oscillate faster than a trillion times a second, many times faster than modern computer chips, the scientists said. A 3.5-gigahertz computer processor, for example, operates at a frequency of 3.5 billion times per second.
"What was beautiful about this result was that we studied the material using different complementary experimental methods at different institutions and they all remarkably converged to the same picture," said Peter Kim, graduate student at UC San Diego, and co-author of the paper.
Further research is needed to directly use the magnetic knob, the scientists said. If that can be achieved, though, it could lead to ultra-fast devices that can efficiently and reversibly control lossless currents.
"A major challenge in making faster, more powerful electronic processors is that they heat up," said Venkatraman Gopalan, professor of materials science and engineering and physics at Penn State, Padmanabhan's former adviser, and co-author of the paper. "Heating wastes energy. If we could find efficient ways to control materials that host lossless currents, that would potentially allow us to deploy them in future energy-efficient electronic devices."
Source: Penn State
Published April 2022