June 21, 2022 Volume 18 Issue 23

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Rugged photoelectric sensors see up to 4 meters

Automation-Direct has added AchieVe FDM series 12-mm tubular photoelectric sensors that offer a rugged metal construction, high IP67 protection ratings, and sensing distances up to 4 m. These sensors feature selectable light-on/dark-on operation, a 10- to 30-VDC operating voltage range, potentiometer or teach-in button sensitivity adjustment, and a fast 1-kHz switching frequency. Highly visible red LED models are offered with the polarized reflective sensing style, while infrared models are available in diffuse and through-beam styles. Lots of applications. Three-year warranty.
Learn more.


Engineer's Toolbox: Critical inspection of airplane parts with a SVS-Vistek 10GigE camera

Manufacturers of aviation engine components are being impacted by Industry 4.0's emphasis on quality control, which is challenging them to rethink outdated processes and to embrace new technologies. A new system developed by researchers in Italy uses a Kuka robot, a SVS-Vistek 61-megapixel 10GigE camera, and AI to detect defects in honeycomb aerospace parts faster and with more accuracy.
Read the full article.


What's new in MATLAB and Simulink?

Release 2024b from MathWorks offers hundreds of new and updated features and functions in MATLAB and Simulink including several major updates -- including 5G Toolbox, Simulink Control Design, System Composer, and more -- that streamline the workflows of engineers and researchers working on wireless communications systems, control systems, and digital signal processing applications.
View the video.


COTS-based space-ready orbital systems

Aitech Systems' solutions can meet the growing demands for shorter development times and lower costs among satellite buses, subsystems, and payloads. Using a Space Digital Backbone (DBB) approach, which provides a flexible, scalable communication pathway for the increasing number of Internet of Things technologies being implemented into space missions, the company provides a selection of space-rated subsystems for common space platforms including: Earth observation, communications, power control, navigation, and robotics.
Learn more.


Circuit breakers have magnetic module option

SCHURTER has upgraded its 2-pole classic TA35 and TA36 thermal circuit breaker models with an additional, optional magnetic module. From now on, no additional fuse is required when using a thermal-magnetic type. Depending on the application, the magnetic modules are available either with a slow- or a fast-acting characteristic. Both models are designed for snap-in mounting and with finely graduated rated currents. A variety of colors and lighting options make the designer's choice easier.
Learn more.


All about magnetic rotary encoder

The precision and reliability offered by modern rotary encoders are essential in many product categories. These include robotics, machine tools, printing presses, motion control systems, medical equipment, aerospace, gaming and entertainment, and automotive. Learn all about magnetic rotary encoders -- and important developments in the technology's future.
Read the full Avnet article.


High-res image sensor for automotive ADAS and AD

OMNIVISION has expanded its TheiaCel™ product portfolio with a new OX12A10 12-MP high-res image sensor for automotive cameras. This sensor, with the highest resolution in its line, improves automotive safety by eliminating LED flicker regardless of lighting conditions. It is ideal for high-performance front machine vision cameras for advanced driver assistance systems (ADAS) and autonomous driving (AD).
Learn more.


Durable, full redundant angle sensors for automotive and off-highway

Novotechnik's new RSK-3200 Series angle sensors are designed for harsh automotive and off-highway applications. Measurement range is 0 to 360 degrees, and the temperature range is -40 to 125 C. This unit's built-in coupling accepts D-Shaft, with shaft customization available. The sensors are sealed to IP 67 or IP 69k depending on version. RSK-3200 Series sensors are extremely durable with MTTF of 285 years for each of the two channels! Applications include throttle control and EGR valves, transmission gear position, and accelerator position. Very competitive pricing.
Learn more.


Great design: Handle with integrated lighting/signaling

Signaling and indicator lights, switches, and buttons -- elements that hardly any machine can do without. The new JW Winco cabinet U-handle EN 6284 integrates all these functions into a single, compact element. The new U-handle is designed to enhance the operation of systems and machines. It features an integrated button and a large, colored, backlit area on the handle. These elements can be used individually or in combination, providing a versatile tool for system control and process monitoring that can be seen from across the room.
Learn more.


World's most popular 3D multisensor metrology systems get next-gen addition

Offered in two benchtop and two floor-model options to handle nearly any size part, the SmartScope M-Series systems from Optical Gaging Products usher in the next generation of enhancements in image accuracy, optics, and throughput to the world's most popular 3D multisensor video measurement platform. SmartScope M-Series features fixed optics with a 20-megapixel camera and proprietary Virtual Zoom, combined with advanced sensors, illumination, and accessories, to achieve class-leading optical measurement speeds. Lots more features.
Learn more.


SOLIDWORKS Tips: 3 easy ways to focus on your model

SOLIDWORKS Elite Applications Engineer Alin Vargatu demonstrates his top tips for focusing on your model: finding planes the easy way inside your assembly with the Q key, breadcrumbs, and a better way to use the component preview window. Very helpful. Lots more tips on the SOLIDWORKS YouTube channel.
View the video.


Push-pull transformer drivers for automotive power supplies

Nexperia's AEC-Q100 qualified, push-pull transformer drivers (NXF6501-Q100, NXF6505A-Q100, and NXF6505B-Q100) enable the design of small, low-noise, and low-EMI isolated power supplies for a range of automotive applications such as traction inverters and motor control, DC-DC converters, battery management systems, and on-board chargers in EVs. Also suitable for industrial applications such as telecommunications, medical, instrumentation, and automation equipment.
Learn more.


Mini linear position sensor for drones, robots, aero, more

H. G. Schaevitz LLC, Alliance Sensors Group is now offering a miniature, lightweight LZ SERIES linear position sensor product line utilizing LVIT Technology™. These sensors are designed for tight spaces that require excellent stroke-to-length ratio. They are contactless devices for use by drones, OEMs, aerospace, robotics, factory automation, or assembly machinery applications where precision in position sensing is crucial.
Learn all the specs.


What is a Heatric Printed Circuit Heat Exchanger?

According to Parker Hannifin, "A Printed Circuit Heat Exchanger is a robust, corrosion-resistant, high-integrity plate-type heat exchanger manufactured using diffusion bonding." Learn about the technology and why Heatric, a Parker brand, "can manufacture a unit up to 85% smaller and lighter than traditional technologies such as shell and tube heat exchangers."
Read this informative Parker blog.


Tech Tip: Mastering sheet metal bend calculations in Onshape

Mastering bend calculations in sheet metal design is a key skill that can impact the accuracy and manufactur-ability of your designs significantly. Explore the various options available to become a pro in this Onshape Tech Tip: K Factor, bend allowance, and bend deduction, with guidance on when each should be used. You may learn something even if you don't use this software.
Read the Onshape blog.


100,000 streaming movies per sec: Researchers demonstrate 40-channel optical communication link

Researchers demonstrated a silicon-based optical communication link that combines two multiplexing technologies to create 40 optical data channels. The ring-shaped photonic crystal resonator (left) features a nanopattern inside (right) that splits a selected resonant mode for comb generation. Images taken with scanning electron microscopy. [Credit: Su-Peng Yu, NIST]

 

 

 

 

Researchers have demonstrated a silicon-based optical communication link that combines two multiplexing technologies to create 40 optical data channels that can simultaneously move data. The new chip-scale optical interconnect can transmit about 400 GB of data per second -- the equivalent of about 100,000 streaming movies. This could improve data-intensive internet applications from video streaming services to high-capacity transactions for the stock market.

"As demands to move more information across the internet continue to grow, we need new technologies to push data rates further," said Peter Delfyett, who led the University of Central Florida College of Optics and Photonics (CREOL) research team. "Because optical interconnects can move more data than their electronic counterparts, our work could enable better and faster data processing in the data centers that form the backbone of the internet."

A multi-institutional group of researchers describes the new optical communication link in the Optica Publishing Group journal Optics Letters. It achieves 40 channels by combining a frequency comb light source based on a new photonic crystal resonator developed by the National Institute of Standards and Technology (NIST) with an optimized mode-division multiplexer designed by the researchers at Stanford University. Each channel can be used to carry information much like different stereo channels, or frequencies, transmit different music stations.

"We show that these new frequency combs can be used in fully integrated optical interconnects," said Chinmay Shirpurkar, co-first author of the paper. "All the photonic components were made from silicon-based material, which demonstrates the potential for making optical information handling devices from low-cost, easy-to-manufacture optical interconnects."

In addition to improving internet data transmission, the new technology could also be used to make faster optical computers that could provide the high levels of computing power needed for artificial intelligence, machine learning, large-scale emulation, and other applications.

Using multiple light dimensions
The new work involved research teams led by Firooz Aflatouni of the University of Pennsylvania, Scott B. Papp from NIST, Jelena Vuckovic from Stanford University, and Delfyett from CREOL. It is part of the DARPA Photonics in the Package for Extreme Scalability (PIPES) program, which aims to use light to vastly improve the digital connectivity of packaged integrated circuits using microcomb-based light sources.

The researchers created the optical link using tantalum pentoxide (Ta2O5) waveguides on a silicon substrate fabricated into a ring with a nanopatterned oscillation on the inner wall. The resulting photonic crystal micro-ring resonator turns a laser input into 10 different wavelengths. They also designed and optimized a mode-division multiplexer that transforms each wavelength into four new beams that each have different shapes. Adding this spatial dimension enables a fourfold increase in data capacity, creating the 40 channels.

The researchers designed and optimized a mode-division multiplexer that transforms each of the 10 wavelengths into four new beams that each have different shapes. This fourfold increase in data capacity creates 40 channels. [Credit: Kiyoul Yang, Stanford University]

 

 

 

 

Once the data is encoded onto each beam shape and each beam color, the light is recombined back into a single beam and transmitted to its destination. At the final destination, the wavelengths and beam shapes are separated so that each channel can be received and detected independently, without interference from the other transmitted channels.

"An advantage of our link is that the photonic crystal resonator enables easier soliton generation and a flatter comb spectrum than those demonstrated with conventional ring resonators," said co-first author Jizhao Zang from NIST. "These features are beneficial for optical data links."

Better performance with inverse design
To optimize the mode division multiplexer, the researchers used a computational nanophotonic design approach called photonic inverse-design. This method provides a more efficient way to explore a full range of possible designs while offering smaller footprints, better efficiencies, and new functionalities.

"The photonic inverse-design approach makes our link highly customizable to meet the needs of specific applications," said co-first author Kiyoul Yang from Stanford University.

Tests of the new device matched well with simulations and showed that the channels exhibited a low crosstalk of less than -20 dB. Using less than -10 dBm of received optical receiver power, the link performed error-free data transmission in 34 out of the 40 channels using a PRBS31 pattern, a standard used to test high-speed circuits under stress.

The researchers are now working to further improve the device by incorporating photonic crystal micro-ring resonators that produce more wavelengths or by using more complex beam shapes. Commercializing these devices would require the full integration of a transmitter and receiver chip with high bandwidth, low power consumption, and a small footprint. This could enable the next generation of optical interconnects for use in data-center networks.

Open-source code for the photonic optimization software used in the paper is available at https://github.com/stanfordnqp/spins-b.

Source: Optica

Published June 2022

Rate this article

[100,000 streaming movies per sec: Researchers demonstrate 40-channel optical communication link]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2022 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy