August 06, 2024 Volume 20 Issue 29

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

New smart motor controller for automotive

Toshiba has started sample shipments of the TB9M001FTG, the second product in its Smart Motor Control Driver (SmartMCD) series. This microcontroller can drive relays and control two brushed DC motors (forward and reverse control) in automotive applications. It incorporates a relay driver function and a LIN transceiver function, high-capacity flash memory, and power supply system. In addition to controlling brushed DC motors in applications such as power sunroofs, electric wipers, power windows, and power seats, it can also control sensors and actuators.
Learn more.


Versatile Transport System: Turbocharge conveyance

THK's Versatile Transport System is a high-mix production solution that will keep your production line moving. Its linear motor drive enables high-speed operations, and processing can be performed directly on top of the system's freely recirculating sliders. This highly precise, modular system has many unique features, including easily adjustable stop positions, flex layouts with path splitting and parallelization, and easy addition/subtraction of extension pieces.
View the video.


Tech Tip: How to keep heavy loads balanced

Some Thomson smart linear actuators have a position-based synchro-nization option to help manage unbalanced loads when using multiple units. The system adjusts the speed of each actuator to keep them starting, moving, and stopping synchronously, regardless of their respective load distribution. So useful. So smart.
Learn all about this feature.


Micropositioning stages ensure high accuracy

PI now offers fast delivery of the L-511 linear microposi-tioning stage, which is designed for applications requiring minimum incremental motion down to 20 nm and drive forces up to 22 lb. The L-511 can be combined to form XY or XYZ motion systems and integrated with rotary stages for enhanced flexibility. Features high-load recirculating ball bearings for exceptional durability, even under demanding, repetitive cycles. To enhance positioning accuracy and automation throughput, this stage integrates non-contact, direction-sensing optical reference point switches located at mid-travel.
Learn more.


Robots think and act on the fly at moving assembly line speeds

Inbolt and FANUC are launching a manufacturing breakthrough enabling FANUC robots to tackle one of the most complex automation challenges: performing production tasks on continuously moving parts at line speeds. With Inbolt's AI-powered 3D vision, manufacturers can now automate screw insertion, bolt rundown, glue application, and other high-precision tasks on parts moving down the line without costly infrastructure investments or cycle time compromises.
Learn more.


Best high-speed rotary bearing in THK history

THK has developed its best-performing, high-speed rotary bearing ever: the High-Speed, Double-Row Angular Contact Ring BWH. This rotary bearing has balls aligned inside a cage between the inner and outer rings and is part of the THK Rotary Series, along with the cross-roller ring. The main features of this product are its ability to receive loads in all directions as well as its high rigidity and rotational accuracy, which are equal to that of cross-roller rings. By adopting a new structure to change the rolling elements from rollers to balls, this product achieves the greatest high-speed performance ever offered by THK.
Learn more.


Elevating tables: Precise vertical positioning in tight spaces

As semicon-ductors and optical components become smaller and more sophisticated, the TZ Series of precision elevating tables from IKO International provides exceptional vertical positioning accuracy in a compact size. This unit features a unique wedge mechanism guided in the vertical direction by a pair of IKO C-Lube Super MX linear motion rolling guides arranged in parallel to achieve highly precise positioning with exceptional rigidity. An optional linear encoder provides full closed loop control to achieve positioning accuracy as high as 0.005 mm, with repeatability of +/-0.001 mm.
Learn more and get all the specs.


This cobot is all about safety around people

The COBOTTA PRO from DENSO Robotics is a lightweight, high-speed collaborative robot designed for communication between workers and robots while maximizing productivity. It delivers a blend of productivity and safety for both simple tasks and multi-step processes like assembly and inspection work. The 6-axis unit operates at speeds up to 2,500 mm per sec when no workers are near and slows or stops when people approach. Two models available: PRO 900 (max payload 6 kg) and PRO 1300 (max payload 12 kg). Many more functions and features.
Learn more.


Powerful, pull-type clapper solenoids handle myriad jobs

New powerful, low-profile, pull-type clapper solenoids are available from Magnetic Sensor Systems (MSS). Applications include valve control, locks, starters, ventilators, clamping, sorting, appliances, tools, HVAC, brakes, clutches, switches, mixing, fire suppression systems, door controls, detent latches, and more. The S-16-264 Series of 17 Pull-Type Clapper Solenoids have ampere turns (windings) adjusted to meet the specific force and duty cycle requirements of your application. They provide up to 130 lb (578 N) of force.
Get all the specs for these solenoids and other options.


Tech Tip: Belt, screw, or chain-driven actuator?

Bishop-Wisecarver provides a quick, very useful guide to help you evaluate the right drive strategy for your system: belt, screw, or chain-driven actuator. Each drive type has unique advantages and limitations, so evaluating all your options will help you find the most suitable actuator setup for your specific application needs.
Read the Bishop-Wisecarver blog.


Ultra-precise linear stage -- down to 0.005 microns

PI, a global leader in precision motion control and nanoposi-tioning, now offers fast delivery of the L-511 linear micropositioning stage, which is designed for applications requiring minimum incremental motion down to 20 nm, drive forces up to 22 lb, and multi-axis configuration options. The L-511 can be combined to form XY or XYZ motion systems and integrated with rotary stages. A variety of drive and encoder options (stepper and servo motors, rotary, and linear encoders) enable ultra-fine sensitivity. Applications include: metrology, laser processing, semiconductors, biotech, optical alignment, and advanced automation.
Learn more and get all the specs.


Choosing the right stepper motor: PM or hybrid?

According to the experts at Lin Engineering, there are two primary types of stepper motors to consider: permanent magnet (PM) and hybrid. But which is right for your application? Both types have their advantages and disadvantages, and the choice ultimately depends on your specific requirements.
Read this informative Lin Engineering article.


New PTFE-free linear guide for precise positioning

The new drylin WWP linear guide from igus features a PTFE-free locking carriage. Engineered from lubrication-free, high-performance polymers and aluminum, the guide offers a lightweight, hygienic, and low-maintenance alternative to complex mechanical and electronic adjustment systems. It is significantly more compact and lightweight than conventional recirculating ball-bearing systems. Applications include interior components in vehicles, aircraft, and furniture.
Learn more and get all the specs.


Heavy-duty gear units for mixing and agitating systems

MAXXDRIVE industrial gear units from NORD DRIVE-SYSTEMS are an established drive solution for heavy-duty applications. In addition to conveying, lifting, and driving, they also play an important role in mixing and agitating systems. MAXXDRIVE units feature a compact, one-piece UNICASE housing that delivers long service life, easy maintenance, and quiet operation. Their robust design handles high axial and radial loads, achieves output torques up to 2,495,900 lb-in., and powers up to 8,075 hp.
Learn more.


What are non-captive linear actuators?

According to PBC Linear, their new non-captive linear actuators are different from the more common external versions of lead screw-driven linear actuators because they allow the lead screw to completely pass through the motor. This fundamental difference offers advantages for designs that have limited space available or for engineers looking to shrink the overall size of their design package.
Read the full PBC Linear blog.


GE Aerospace demonstrates hypersonic dual-mode ramjet with rotating detonation combustion

GE Aerospace lifted the curtain recently on its comprehensive hypersonics program at its Research Center in Niskayuna, NY, demonstrating what is believed to be a world-first hypersonic dual-mode ramjet (DMRJ) rig test with rotating detonation combustion (RDC) in a supersonic flow stream.

The new architecture with RDC could power super-efficient hypersonic vehicles with longer range that exceed MACH 5, or greater than 4,000 mph.

An artist's interpretation of a hypersonic vehicle. [Photo credit: GE Aerospace]

 

 

This milestone and overall portfolio of programs position GE Aerospace to pursue multiple opportunities in the hypersonic sector as it prepares to launch as a standalone company in Q2 of 2024.

The successful high-speed propulsion DMRJ demonstration is part of a comprehensive portfolio of technology programs GE Aerospace is developing and scaling to advance hypersonic capabilities, including high-temperature materials and high-temperature electronics. These technologies are the product of more than a decade's worth of direct hypersonic-related efforts advanced by GE Aerospace Research and several decades of developments for its GE Aerospace engine business in key areas such as high-temperature ceramic matrix composites (CMCs), silicon carbide power electronics, additive technologies, and advanced thermal management.

"The highly successful demonstration of a DMRJ with RDC is an outgrowth of our 10+ years of RDC work, including the strategic acquisition of Innoveering that has brought leading technologies and experience in hypersonic propulsion and ramjets," says Amy Gowder, president and CEO, GE Aerospace, Defense & Systems.

A typical air-breathing DMRJ propulsion system can only begin operating when the vehicle achieves supersonic speeds greater than Mach 3. GE Aerospace engineers are working on a rotating detonation-enabled dual-mode ramjet that is capable of operating at lower Mach numbers, enabling the flight vehicle to operate more efficiently and achieve longer range.

The acquisition of Innoveering last year gave GE Aerospace dual-mode ramjet engine capabilities that were rapidly augmented with GE Aerospace Research's decade's-long work in RDC and several decades of GE Aerospace experience in high-Mach research and engine development programs. RDC enables higher thrust generation more efficiently, at an overall smaller engine size and weight, by combusting the fuel through detonation waves instead of a standard combustion system that powers traditional jet engines today.

According to Mark Rettig, vice president and general manager, Edison Works Business & Technology Development, GE Aerospace, the GE hypersonics team has moved very fast, with it taking just 12 months from start to finish for the DMRJ with RDC demonstration. The team is on track with its goal to demonstrate a full DMRJ with RDC at scale by the end of this year.

The development of high-speed ramjet propulsion capabilities is a key anchor point of other key advancements in hypersonic technologies, including:

  • High-temperature materials: GE Aerospace is the only aerospace OEM using ceramic matrix composites (CMCs) in the high-pressure turbines on commercial aircraft. These decades of materials innovation in superalloys have delivered higher temperature capabilities and durability that have enabled commercial engines to operate more efficiently over time.
  • High-temperature electronics: GE Aerospace researchers recently demonstrated the first Silicon Carbide (SiC) MOSFETs that can operate at temperatures exceeding 800 C, along with other recent advancements in SiC technology that have created scalable 600-C-capable electronics to control and monitor hypersonic vehicles in extreme high-temperature operating environments. GE Aerospace has amassed a leading IP portfolio in SiC over two decades and already offers SiC-based electrical power products with power levels from kilowatts to megawatts for harsh environments in aerospace, industrial, and military applications.

Source: GE Aerospace

Published February 2024

Rate this article

[GE Aerospace demonstrates hypersonic dual-mode ramjet with rotating detonation combustion]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2024 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy