September 22, 2015 Volume 11 Issue 36

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

DURApulse GS30 AC Drives from AutomationDirect

Automation-Direct has added new high-performance DURApulse GS30 drives that support several control modes including sensorless vector control, closed-loop flux vector control, and torque control in a compact package. The GS30 series expands the DURApulse family by adding internal tension control loop expanded parameter sets for greater versatility, as well as optional EtherCAT and single- or dual-port EtherNet/IP communication cards. GS30 drives support up to four independent induction motor parameter sets or control of a single AC permanent magnet motor. Sizes up to 3 hp for a 230-VAC single-phase input, 50 hp for a 230-VAC three-phase input, and 100 hp for a 460-VAC three-phase input. This series offers PID control, built-in PLC functionality, and STO capability typically found with more expensive high-performance AC drives.
Learn more.


Power steering systems for warehouse and autonomous vehicles

Allied Motion has introduced the electric power steering (EPS) series for steer-by-wire warehouse vehicles, autonomous AGVs, and similar material transport vehicles. This compact system includes a fully integrated motor, gearbox, controller, and optional output pinion. It is available in three frame sizes and 16 models to cover virtually any electric steering requirement in applications from small pallet lifters to AGVs/AGCs to multi-ton reach trucks. An optional, patent-pending feature, Turning Wheel Absolute Position Control, allows the controller to know the turning wheel position without external sensors.
Learn more.


New brushless motors maximize power density

Allied Motion Technologies has introduced the KinetiMax 95 High Power Drive (HPD), an outer-rotor brushless motor. This frameless motor is designed to maximize power density for its volume with a nominal output torque of 2 Nm at 2,300 RPM, resulting in 480 W of continuous output power. At only 37 mm axial length, this compact stator-rotor set is an ideal solution for applications such as material handling systems, AGVs, mobile robots, handheld power tools, and more.
Learn more.


Compact rod motors: Effective linear thrust generation

RDM-A Series rod motors from Akribis Systems are great for space-constrained applications requiring high motor forces and smooth linear motion. These compact motors feature a tubular design to distribute magnetic flux evenly along the circumference of the stator. They achieve continuous forces from 2.1 to 137.8 N and peak forces from 6.2 to 413.4 N. An air gap between the coil and magnet track enables non-contact axial linear movement and steady force production over the length of the stroke, and ironless construction ensures cog-free motion.
Learn more.


NORD's heavy-duty drive systems tackle tough industrial applications

Industrial gear units from NORD DRIVE-SYSTEMS are used for a variety of heavy-duty applications, providing high output torques and long service life with minimal maintenance. Combining high-efficiency motors and dynamic VFDs, users get high performance and smooth operation. Learn which drive systems are used for which real-world applications in industries including grain, cranes and hoists, wastewater, food and beverage, and bulk material handling. Good info here.
Read the full article.


XYZ nanopositioning stage for scanning and positioning in photonics and microscopy

PI's P-616 XYZ Piezo Nanoposition-ing Stage, based on a parallel-kinematic design, features a single, lightweight moving platform for all three axes. It offers high precision (sub-nanometer resolution) and dynamics in a compact package. Known as the NanoCube®, it is the smallest and lightest system with capacitive feedback, providing a 100-µm linear travel range in three degrees of freedom.
Learn more.


Robot with longer reach handles heavier payloads

The new RV-35/50/80FR robot series from Mitsubishi Electric Automation is ideal for handling large workpieces and heavy objects. This series has a max reach of almost 83 in. (2,100 mm) and a max payload over 175 lb (80 kg), so it's a great solution for palletizing and machine tending. These robots have a wide range of safety functions, including position and speed monitoring, and simplified installation and programming when paired with Mitsubishi Electric's MELFA Smart Plus card.
Learn more.


Linear servo press solutions from Tolomatic

Improve your pressing systems with electric linear actuators from Tolomatic. While hydraulic presses are a traditional choice in many manufacturing applications, a new generation of high-force Linear Servo Press technologies is now replacing high-maintenance hydraulics. They offer significant advantages in precision, programmability, energy efficiency, reliability, and flexibility.
Learn more.


Tech Tip: What is a stepper motor linear actuator?

What is a stepper motor linear actuator (SMLA), what types are available, and what can they do for your linear motion designs? Find out in this informative Thomson video. Learn how precision lead screws can be combined with a stepper motor in a number of ways, and discover which type can benefit your linear motion applications.
View the video.


Brakes for high-speed SCARA robots and more

Precise positioning of semi-conductor wafers during SCARA assembly operations requires instantaneous braking and holding power while minimizing heat in the system. The latest compact and slender Miki Pulley BXR-LE brake models provide the needed, perfectly controlled braking in a confined area of the system using minimal power. The braking response and holding power of this power-off engaged brake makes it ideal for this and other high-speed applications. The BXR-LE brake uses 24 VDC for a split second to overcome compression spring inertia to open the brake, then consumes only 7 VDC by utilizing the BEM power control module.
Learn more.


Automated piece-picking solution

The MI.RA/ OnePicker is a new and fully automated intelligent piece-picking solution from Comau. The easy-to-use, AI-backed, and collaborative solution reduces upstream process times, saving time, energy, and resources for warehouse, e-commerce, and other applications while increasing overall productivity and cost efficiency. Designed to autonomously pick miscellaneous objects from the same bin, it's a smart way to eliminate unsustainable sorting activities. Comes with Comau's Racer5 six-axis cobot.
Learn more.


Unlock cost savings: Revolutionary GAM GPL Gearbox

The GPL planetary gearbox, when paired with your preferred servo motor, delivers a solution that can match the fit and performance of direct drive motors while offering significant cost savings. With <6 arcsec backlash, GAM says this gearbox outperforms all other zero-backlash gearboxes on the market, making it the ideal choice for your applications. Discover how one company realized significant savings by replacing multiple direct drive motors with the GPL gearbox in a modular housing.
Read the GAM application story.


Bosch Rexroth new linear motor modules

Fast, compact, and precise. These properties characterize the new linear motor modules (LMM) with integrated screw-free direct drive from Bosch Rexroth. The axes are available in sizes 140, 180, and 220 mm and feature a zero-backlash direct drive. They complement the existing linear motion technology portfolio as a ready-to-install solution offering excellent value for money. The linear motor modules are available in all sizes with iron-core linear motors. Standard strokes are up to 1,540 mm and forces up to 2,400 N.
Learn all the specs and options.


OnRobot doubles payload capacity of its grippers

OnRobot's new 2FG14 and 3FG25 electrical grippers for heavy-duty, collaborative applications are now launching along with the new machine tending solution AutoPilot powered by D:PLOY, developed in collaboration with Ellison Technologies. The new three-fingered 3FG25 gripper provides users with 25 kg (55.1 lb) of payload power in a compact, all-electric, lightweight form, unlocking the potential of the latest cobots. Ideal for CNC machine tending, the 2FG14 is a lightweight parallel-finger gripper with a payload of 14 kg (30.8 lb). It doubles the payload and gripping force of OnRobot's popular 2FG7 gripper while also providing 30% more total stroke.
Learn more.


Linear guide system corrects misalignments

Bishop-Wisecarver's UtiliTrak® linear guide system includes vee rails for precision and open rails for misalignment float to provide smooth and accurate motion on inaccurate structures. Because precise parallelism is difficult to achieve, it is not uncommon for mounting surfaces to be slightly out of parallel. UtiliTrak's design compensates for mounting errors and does not require absolute parallelism for accurate operation. Genius.
Learn more.


Plasma research aims to make airplane flight safer

By Jill Goetz, College of Engineering, University of Arizona

Plasma has generated excitement among aerodynamics researchers for its effects on air flow and its potential for building more agile and fuel-efficient flying machines, ranging from planes, helicopters, and drones to rockets and satellites.

Now a rising star in aerodynamics at the University of Arizona College of Engineering is putting plasma's promise to the test.

Assistant professor of aerospace and mechanical engineering Jesse Little received a $245,000 grant in June from the Defense University Research Instrumentation Program, or DURIP, for a project titled "Interaction of Three-Dimensional Unsteady Flows With Aerodynamic Surfaces." DURIP is a collaboration of the U.S. Army, Navy, and Air Force research divisions.

The grant augments Little's ongoing plasma aerodynamics work funded with a 2014 Army Research Office Young Investigator Program Award. Little received an earlier YIP Award in 2012 from the Air Force Office of Scientific Research.

"These awards are evidence of Jesse's significant contributions to this important research focus," said Jeff Jacobs, head of UA aerospace and mechanical engineering.

Aerospace engineering student researcher Ken Decker adjusts a flow-control manifold in the UA College of Engineering's wind-tunnel facility.

 

 

Controlling chaos
Little directs the UA Turbulence and Flow Control Laboratory, where he studies what causes turbulence, how it behaves, and how it can be controlled. Turbulent flow is inherently chaotic -- think of water crashing at the bottom of a waterfall -- and filled with vortices and eddies that scientists are only just beginning to understand.

"As more airplanes, helicopters, and drones fly at lower altitude and in urban areas -- where air tends to be more unsteady than, say, at 40,000 feet -- it becomes even more important to understand turbulent air flows and how they interact with solid surfaces," Little said.

Little is one of many researchers around the globe using active flow control, a technology pioneered by UA aerospace and mechanical engineering professor Israel Wygnanski, who, with engineers from Caltech, Boeing, and NASA, designed a smaller, lighter airplane tail using sweeping-jet actuators that emit tiny bursts of air to disrupt and control air flow. [Read more about this project in Designfax here.

Little's actuators use high voltage to ionize air, producing plasma. Plasma, or ionized gas, is believed to be the most abundant state of matter in the universe. It produces thermal energy for some of nature's most spectacular displays: lightning and stars, for example, which can exceed 50,000 deg F.

The thermal energy from a plasma discharge can interrupt and control air flows to an extraordinary degree -- and even dissipate shock waves, which has prompted aerodynamics researchers to write of "plasma magic" in their papers.

In one example of turbulence, air flows can separate from a surface. This puts considerable drag on an airborne object and reduces its lift. Plasma's thermal bursts can reattach these separated flows at the precise spot they originated. This means plasma can reduce drag on an aircraft and prevent it from stalling.

Little and students working in his lab use power generators to ionize air particles that are exposed to strips of copper tape. The copper strips act as electrodes, conducting high-voltage electricity to actuate the plasma floating above them.

Actuators in hand, the researchers climb into the aerospace and mechanical engineering department's subsonic wind tunnel to attach them along with strips of dielectric, or insulating, tape at precise locations on the airfoil, a cross-section of a wing.

Back outside, with the press of a button, they turn on the actuators, which emit nanosecond pulses of plasma over the airfoil's surface. The team takes precise measurements and conducts computer analyses of how these plasma "hot spots" affect air flow at specific locations on the airfoil, particularly the leading edge.

Cleaner technologies
Little's findings will help engineers design plasma actuators that can be attached, perhaps in sheets, to an airplane wing or helicopter rotor blade. These lightweight electronic flow-control devices could shrink or even replace much heavier airplane control surfaces, such as wing flaps and tails, reducing the plane's weight and enabling it to fly farther on less fuel. The plasma actuators also have potential to revolutionize aspects of wind-tunnel testing, allowing researchers to perform experiments currently limited to expensive flight tests.

Plasma actuators could improve efficiency inside planes too.

"Industry faces ever greater pressure to improve combustion efficiency, reduce pollutant emissions, and make ignition and combustion processes more reliable," Little said. "We know that plasma discharges can enhance fuel-air reactivity and reduce exhaust. Plasma actuators could lead to much cleaner engines, not just in aviation, but in many industries."

A high school intern and undergraduate student -- funded by 2015 Army Research Office apprenticeship grants -- and an Army captain pursuing his master's degree are among the students working on the project with Little.

"I have wanted to be an aerospace engineer since I was in the fourth grade," said Zachary Wellington, who graduated from Sonoran Science Academy in May and is starting his first year as a UA engineering student.

For Timothy Ashcraft, a helicopter pilot whose military honors include the Bronze Star, the project hits close to home.

In August 2010, Ashcraft was co-piloting an Apache helicopter in Afghanistan when it was shot down. Both pilots survived.

Ashcraft is pursuing his UA master's degree in aerospace and mechanical engineering with funding from the Army. After he graduates, he will teach engineering at the U.S. Military Academy at West Point, where he received his bachelor's degree in 2007.

"I survived for two reasons," he said. "The exceptional skill of the pilot in command, and the engineers who built and designed the aircraft to withstand severe battle damage.

"I hope I can give back to the field of aerospace engineering, because it literally saved my life."

Published September 2015

Rate this article

[Plasma research aims to make airplane flight safer]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2015 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy