January 26, 2016 Volume 12 Issue 04

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Panasonic solar and EV components available from Newark

Newark has added Panasonic Industry's solar inverters and EV charging system components to their power portfolio. These best-in-class products help designers meet the growing global demand for sustainable and renewable energy mobility systems. Offerings include film capacitors, power inductors, anti-surge thick film chip resistors, graphite thermal interface materials, power relays, capacitors, and wireless modules.
Learn more.


Standard parts with signal feedback included

JW Winco standard parts are becoming even more functional -- multifunctional, to be precise. From smart stop bolts that report whether workpieces are precisely positioned in the machining process to cabinet handles with signal lights and fluid level indicators with electronic REED contact signals, intelligent standard parts from JW Winco ensure greater safety, higher efficiency, and increased stability. Many more very useful options available for a wide range of applications.
Learn more.


Create smarter control systems with relays

Control relays play a pivotal role in the world of automation and control systems. These versatile devices are designed to help you manage electrical circuits, making them indispensable for a wide range of applications. Learn the distinctive benefits of relays, including reliability and durability, versatility, ease of use, and costs. Check out the relays AA Electric has in stock too.
Learn more.


COMSOL Multiphysics Version 6.2 is here

COMSOL Multiphysics Version 6.2 introduces faster solvers for turbulent fluid flow, electric motors, and room acoustics. It also brings data-driven surrogate model functionality for creating multiphysics-based digital twins and building fast and accurate standalone simulation apps. Get the full details of what's new in the latest version.
Learn more.


17 ways SOLIDWORKS 2024 helps you work faster

SOLIDWORKS 2024 helps designers and engineers work faster than ever. Learn all about improvements to core 3D CAD modeling features, new 3D modeling techniques, and graphical and software performance boosts that will help you get your parts made and your products developed in record time.
View the video.


6 tips to streamline workflow in Mastercam 2024

Mastercam 2024 CAD/CAM software has been intentionally upgraded to make programming fast and easy. It prioritizes streamlining workflow so that the entire machining process -- from design to QC -- is as efficient as possible. Learn how to maximize the benefits of Mastercam 2024, including special toolpaths, easier hole-making operations, wireframe shortcuts, and more.
Read this informative Mastercam blog.


Leak detection sensor for multiple HVAC refrigerants

Sensata Technologies has launched the Sensata Resonix RGD sensor, the first leak detection sensor with UL certification for multiple A2L refrigerant gases used in heating, ventilation, and air conditioning (HVAC) equipment. It supports HVAC manufacturers' transition to refrigerants with a lower global warming impact. Typically mounted near the evaporator coil, the new sensor measures the acoustic resonance of the surrounding air in real time and can trigger mitigation, such as a fan, when A2L gas is detected.
Learn more.


New electro-pneumatic vacuum regulator

The Type 1005V Electronic Vacuum Regulator is the first electronic vacuum regulator offered by ControlAir. It is used in various industrial and automation applications to precisely control and regulate the flow of air or gases in a system. It has two solenoid valves, a pressure sensor, and an electronic board for precise control to ensure that the vacuum pressure remains steady.
Learn more.


Real-world applications: FUTEK 100 sensor examples

Get inspired. FUTEK has more than 100 real-world application examples for their load cells, force transducers, torque sensors, pressure sensors, and multi-axis sensors. From a cryogenic load cell on the Mars Curiosity rover to fly-by-wire multi-axis force and torque sensors for aircraft, learn about sensor systems, their specs, and design. Automotive, manufacturing, medical, robotics, and automation are covered too. Fascinating and highly practical.
Learn more.


Filter fans for enclosures: 70 models in new series

The new 4000 Series from Seifert Systems covers 70 UL-listed filter fan models designed for enclosure applications. They snap in place once a cutout is made in the enclosure. Mounting screws are available with EMC models or as an option. Filter media snaps in place and easily slides out for replacement. When used with a Seifert thermostat, 4000 Series filter fans can be turned on only when needed. Air flow ranges from 7 to 483 cfm.
Learn more.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) tech combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Need help with electronics connection design and manufacturing?

Conta-Clip combines electronics hardware and software development and production under one roof. Their comprehensive services range from simple-but-effective interface converters to complex control systems with touch displays and Ethernet connections. The company develops competitive connection solutions (including account costing) and closely cooperates with customers from needs analysis to prototype development, functional testing, series production, and even certification.
Learn more.


Rugged sensor measures surface temperatures

TDK's tiny new T850 SMT NTC sensor measures surface temperatures for applications such as heat sinks of power modules and monitoring of industrial processes. It combines high humidity resistance with fast response time due to excellent thermal coupling to the target. The sensor is suitable for harsh environments with temps from -40 C to 150 C and is waterproof to 500 hrs.
Learn more.


Inflatable EMI shielded RF enclosures

Saelig Company has introduced the Select Fabricators Series 700 EMI Enclosures -- reliable, portable, and lightweight RF and EMI shielding enclosures in standard sizes with a fast-up inflatable frame, ready for operation in less than 60 sec. No more aluminum tents. The Series 700 applies the same level of RF security obtained with previous RF/EMI shielded enclosures but is now made even more portable. Great for military operations, secure communications, mobile testing, emergency response, and more.
Learn more.


Haptic feedback prototyping kit from TDK

Get your customers to feel the difference your products make. TDK has just released a development starter kit for fast haptics prototyping. It gives mechanical designers and engineers first impressions of the haptic feedback using PowerHap piezo actuators, shows how the mechanical integration works, and provides a reference design. Applications include automotive, displays and tablets, household appliances, vending machines, game controllers, industrial equipment, and medical devices.
Learn more.


New lithium-ion battery design shuts down at high temps and restarts when it cools

Stanford researchers have invented a lithium-ion battery that turns on and off depending on the temperature. The new technology could prevent battery fires that have plagued laptops, hoverboards, and other electronic devices.

By Mark Shwartz

Stanford researchers have developed the first lithium-ion battery that shuts down before overheating, then restarts immediately when the temperature cools.

The new technology could prevent the kind of fires that have prompted recalls and bans on a wide range of battery-powered devices, from recliners and computers to navigation systems and hoverboards.

Stanford researchers have developed a thin polyethylene film that prevents a lithium-ion battery from overheating, then restarts the battery when it cools. The film is embedded with spiky nanoparticles of graphene-coated nickel. [Photo: Zheng Chen]

 

 

 

 

"People have tried different strategies to solve the problem of accidental fires in lithium-ion batteries," said Zhenan Bao, a professor of chemical engineering at Stanford. "We've designed the first battery that can be shut down and revived over repeated heating and cooling cycles without compromising performance."

Bao and her colleagues describe the new battery in a study published in the Jan. 11 issue of the new journal Nature Energy.

A typical lithium-ion battery consists of two electrodes and a liquid or gel electrolyte that carries charged particles between them. Puncturing, shorting, or overcharging the battery generates heat. If the temperature reaches about 300 F (150 C), the electrolyte could catch fire and trigger an explosion.

Several techniques have been used to prevent battery fires, such as adding flame retardants to the electrolyte. In 2014, Stanford engineer Yi Cui created a "smart" battery that provides ample warning before it gets too hot.

"Unfortunately, these techniques are irreversible, so the battery is no longer functional after it overheats," said study co-author Cui, an associate professor of materials science and engineering and of photon science. "Clearly, in spite of the many efforts made thus far, battery safety remains an important concern and requires a new approach."

Nanospikes
To address the problem, Cui, Bao, and postdoctoral scholar Zheng Chen turned to nanotechnology. Bao recently invented a wearable sensor to monitor human body temperature. The sensor is made of a plastic material embedded with tiny particles of nickel with nanoscale spikes protruding from their surface.

For the battery experiment, the researchers coated the spiky nickel particles with graphene, an atom-thick layer of carbon, and embedded the particles in a thin film of elastic polyethylene.

"We attached the polyethylene film to one of the battery electrodes so that an electric current could flow through it," said Chen, lead author of the study. "To conduct electricity, the spiky particles have to physically touch one another. But during thermal expansion, polyethylene stretches. That causes the particles to spread apart, making the film nonconductive so that electricity can no longer flow through the battery."

When the researchers heated the battery above 160 F (70 C), the polyethylene film quickly expanded like a balloon, causing the spiky particles to separate and the battery to shut down. But when the temperature dropped back down to 160 F (70 C), the polyethylene shrank, the particles came back into contact, and the battery started generating electricity again.

"We can even tune the temperature higher or lower depending on how many particles we put in or what type of polymer materials we choose," said Bao. "For example, we might want the battery to shut down at 50 C or 100 C."

Reversible strategy
To test the stability of the new material, the researchers repeatedly applied heat to the battery with a hot-air gun. Each time, the battery shut down when it got too hot and quickly resumed operating when the temperature cooled.

"Compared with previous approaches, our design provides a reliable, fast, reversible strategy that can achieve both high battery performance and improved safety," Cui said. "This strategy holds great promise for practical battery applications."

Other Stanford co-authors of the study are postdoctoral scholars Nan Liu, Chao Wang, Sean Andrews, and Jia Liu; and graduate students Po-Chun Hsu, Jeffrey Lopez, Yuzhang Li, and John To.

The research was supported by the SLAC National Accelerator Laboratory and the Precourt Institute for Energy at Stanford.

Published January 2016

Rate this article

[New lithium-ion battery design shuts down at high temps and restarts when it cools]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2016 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy