August 02, 2016 Volume 12 Issue 29

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Telescoping linear actuators for space-constrained applications

Rollon's new TLS telescoping linear actuators enable long stroke lengths with minimal closed lengths, which is especially good for applications with minimal vertical clearance. These actuators integrate seamlessly into multi-axis systems and are available in two- or three-stage versions. Equipped with a built-in automated lubrication system, the TLS Series features a synchronized drive system, requiring only a single motor to achieve motion. Four sizes (100, 230, 280, and 360) with up to 3,000-mm stroke length.
Learn more.


Competitively priced long-stroke parallel gripper

The DHPL from Festo is a new generation of pneumatic long-stroke grippers that offers a host of advantages for high-load and high-torque applications. It is interchangeable with competitive long-stroke grippers and provides the added benefits of lighter weight, higher precision, and no maintenance. It is ideal for gripping larger items, including stacking boxes, gripping shaped parts, and keeping bags open. It has high repetition accuracy due to three rugged guide rods and a rack-and-pinion design.
Learn more.


Extend your range of motion: Controllers for mini motors

FAULHABER has added another extremely compact Motion Controller without housing to its product range. The new MC3603 controller is ideal for integration in equipment manufacturing and medical tech applications. With 36 V and 3 A (peak current 9 A), it covers the power range up to 100 W and is suitable for DC motors with encoder, brushless drives, or linear motors.
Learn more.


When is a frameless brushless DC motor the right choice?

Frameless BLDC motors fit easily into small, compact machines that require high precision, high torque, and high efficiency, such as robotic applications where a mix of low weight and inertia is critical. Learn from the experts at SDP/SI how these motors can replace heavier, less efficient hydraulic components by decreasing operating and maintenance costs. These motors are also more environmentally friendly than others.
View the video.


Tiny and smart: Step motor with closed-loop control

Nanotec's new PD1-C step motor features an integrated controller and absolute encoder with closed-loop control. With a flange size of merely 28 mm (NEMA 11), this compact motor reaches a max holding torque of 18 Ncm and a peak current of 3 A. Three motor versions are available: IP20 protection, IP65 protection, and a motor with open housing that can be modified with custom connectors. Ideal for applications with space constraints, effectively reducing both wiring complexity and installation costs.
Learn more.


Closed loop steppers drive new motion control applications

According to the motion experts at Performance Motion Devices, when it comes to step motors, the drive technique called closed loop stepper is making everything old new again and driving a burst of interest in the use of two-phase step motors. It's "winning back machine designers who may have relegated step motors to the category of low cost but low performance."
Read this informative Performance Motion Devices article.


Intelligent compact drives with extended fieldbus options

The intelligent PD6 compact drives from Nanotec are now available with Profinet and EtherNet/IP. They combine motor, controller, and encoder in a space-saving package. With its 80-mm flange and a rated power of 942 W, the PD6-EB is the most powerful brushless DC motor of this product family. The stepper motor version has an 86-mm flange (NEMA 34) and a holding torque up to 10 Nm. Features include acceleration feed forward and jerk-limited ramps. Reduced installation time and wiring make the PD6 series a highly profitable choice for machine tools, packaging machines, or conveyor belts.
Learn more.


FAULHABER IEP3 incremental encoder: Impressive accuracy through latest chip tech

With a diameter of just 8 mm, FAULHABER's new IEP3 incremental encoder is lightweight and compact yet still offers a resolution up to 10,000 lines per revolution -- made possible by the latest chip technology with high interpolation. The chip ensures a high positional accuracy of 0.3┬░ m as well as high repeatability thanks to accuracy compensation. Application areas include telescopes, microscopes, lasers, and cameras; semiconductor production; robotics; and prosthetics.
Learn more.


Compact wheel drive for automated guided vehicles

Nanotec has introduced the WD42 compact wheel drive, a very short drive unit for automated guided vehicles (AGVs) and service robots. Each unit consists of a powerful BLDC motor, a high-torque planetary gearbox, a magnetic encoder, and an exchangeable wheel. All components are integrated directly at the wheel, which makes the drive only 103 mm long and reduces the number of moving parts and connections.
Learn more.


Bottom tapped rails available for quick ship

Bottom tapped rails are useful for mounting from the bottom of a base, as well as when contamination protection is required -- eliminating the need for bolt-hole caps. See the available models from THK, including standard and radial LM guides and standard and radial caged ball. All units are available for quick shipping.
Learn more.


Hybrid actuation system reduces energy consumption, simplifies designs

Learn how a leading manufacturer of household cleaning products solved its downtime problems due to an overloaded ball screw in its production-line electromechanical automated plastic cap dumping function. A Hybrid Actuation System (HAS) did the trick, combining the controllability of traditional electromechanical actuators with the power density, longer life, and failsafe conditions commonly found on traditional hydraulic systems.
Read this informative Parker blog.


Machine tending solution now compatible with any CNC machine

The Robotiq Machine Tending Solution has made automation accessible to businesses of all sizes, overturning the belief that automation is too complicated. The company says their part-feeding solutions can provide up to a 30% production runtime increase -- without communication cards, expensive wiring, custom programming, or permanent modifications.
Learn how to boost your CNC productivity.


How to implement redundancy in stepper motors

Some of the recent research activities in the area of electric motor drives for safety-critical applications (such as aerospace and nuclear power plants) are focused on looking at various fault-tolerant motor and drive topologies. After discussing different solutions, this article focuses on a miniature permanent magnet (PM) stepper motor design that provides increased redundancy.
Read this informative Faulhaber article.


Why choose electric for linear actuators? When precision, multiple positions, repeatability, or position feedback is important

Tolomatic has been delivering a new type of linear motion technology that is giving hydraulics a run for its money. Learn the benefits of electric linear motion systems, the iceberg principle showing total cost of ownership, critical parameters of sizing, and conversion tips.
Read this informative e-book. (No registration required)


New mini gearhead for robotics, semiconductor fab

Harmonic Drive is proud to announce the release of its CSF-2XH mini gearhead designed for servo and stepper motors. Available with an output shaft or flange, these gearheads are offered in four sizes with gear ratios of 30:1 to 100:1 and peak torque of .5 to 28 Nm. These mini strain wave gears are ideal for applications such as semiconductor manufacturing and robotics. Available through Electromate.
Learn more.


Breakthrough solar cell captures CO2 and sunlight, produces burnable fuel

1,000-fold improved chemistry leads to "artificial leaf" that makes syngas.

Researchers at the University of Illinois at Chicago have engineered a potentially game-changing solar cell that cheaply and efficiently converts atmospheric carbon dioxide directly into usable hydrocarbon fuel, using only sunlight for energy.

The finding is reported in the July 29 issue of Science and was funded by the National Science Foundation and the U.S. Department of Energy. A provisional patent application has been filed.

Simulated sunlight powers a solar cell that converts atmospheric carbon dioxide directly into syngas. [Credit: University of Illinois at Chicago/Jenny Fontaine]

 

 

 

 

Unlike conventional solar cells, which convert sunlight into electricity that must be stored in heavy batteries, the new device essentially does the work of plants, converting atmospheric carbon dioxide into fuel, solving two crucial problems at once. A solar farm of such "artificial leaves" could remove significant amounts of carbon from the atmosphere and produce energy-dense fuel efficiently.

"The new solar cell is not photovoltaic -- it's photosynthetic," says Amin Salehi-Khojin, assistant professor of mechanical and industrial engineering at UIC and senior author on the study.

"Instead of producing energy in an unsustainable one-way route from fossil fuels to greenhouse gas, we can now reverse the process and recycle atmospheric carbon into fuel using sunlight," he said.

While plants produce fuel in the form of sugar, the artificial leaf delivers syngas, or synthesis gas, a mixture of hydrogen gas and carbon monoxide. Syngas can be burned directly, or converted into diesel or other hydrocarbon fuels.

The ability to turn CO2 into fuel at a cost comparable to a gallon of gasoline would render fossil fuels obsolete.

Chemical reactions that convert CO2 into burnable forms of carbon are called reduction reactions, the opposite of oxidation or combustion. Engineers have been exploring different catalysts to drive CO2 reduction, but so far such reactions have been inefficient and rely on expensive precious metals such as silver, Salehi-Khojin said.

"What we needed was a new family of chemicals with extraordinary properties," he said.

Salehi-Khojin and his coworkers focused on a family of nano-structured compounds called transition metal dichalcogenides -- or TMDCs -- as catalysts, pairing them with an unconventional ionic liquid as the electrolyte inside a two-compartment, three-electrode electrochemical cell.

The best of several catalysts they studied turned out to be nanoflake tungsten diselenide.

"The new catalyst is more active; more able to break carbon dioxide's chemical bonds," said UIC postdoctoral researcher Mohammad Asadi, first author on the Science paper.

In fact, he said, the new catalyst is 1,000 times faster than noble-metal catalysts -- and about 20 times cheaper.

Other researchers have used TMDC catalysts to produce hydrogen by other means, but not by reduction of CO2. The catalyst couldn't survive the reaction.

"The active sites of the catalyst get poisoned and oxidized," Salehi-Khojin said. The breakthrough, he said, was to use an ionic fluid called ethyl-methyl-imidazolium tetrafluoroborate, mixed 50-50 with water.

"The combination of water and the ionic liquid makes a co-catalyst that preserves the catalyst's active sites under the harsh reduction reaction conditions," Salehi-Khojin said.

The UIC artificial leaf consists of two silicon triple-junction photovoltaic cells of 18 cm2 to harvest light; the tungsten diselenide and ionic liquid co-catalyst system on the cathode side; and cobalt oxide in potassium phosphate electrolyte on the anode side.

When light of 100 watts per square meter -- about the average intensity reaching the Earth's surface -- energizes the cell, hydrogen and carbon monoxide gas bubble up from the cathode, while free oxygen and hydrogen ions are produced at the anode.

"The hydrogen ions diffuse through a membrane to the cathode side, to participate in the carbon dioxide reduction reaction," said Asadi.

The technology should be adaptable not only to large-scale use, like solar farms, but also to small-scale applications, Salehi-Khojin said. In the future, he said, it may prove useful on Mars, where the atmosphere is mostly carbon dioxide, if the planet is also found to have water.

"Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid" is online at http://www.eurekalert.org/jrnls/sci/ or by contacting scipak@aaas.org.

Co-authors with Asadi and Salehi-Khojin are Kibum Kim, Aditya Venkata Addepalli, Pedram Abbasi, Poya Yasaei, Amirhossein Behranginia, Bijandra Kumar and Jeremiah Abiade of UIC's mechanical and industrial engineering department, who performed the electrochemical experiments and prepared the catalyst under NSF contract CBET-1512647; Robert F. Klie and Patrick Phillips of UIC's physics department, who performed electron microscopy and spectroscopy experiments; Larry A. Curtiss, Cong Liu and Peter Zapol of Argonne National Laboratory, who did Density Functional Theory calculations under DOE contract DE-ACO206CH11357; Richard Haasch of the University of Illinois at Urbana-Champaign, who did ultraviolet photoelectron spectroscopy; and JosÚ M. Cerrato of the University of New Mexico, who did elemental analysis.

Source: University of Illinois at Chicago

Published August 2016

Rate this article

[Breakthrough solar cell captures CO2 and sunlight, produces burnable fuel]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2016 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy