![]() |
May 23, 2017 | Volume 13 Issue 20 |
Manufacturing Center
Product Spotlight
Modern Applications News
Metalworking Ideas For
Today's Job Shops
Tooling and Production
Strategies for large
metalworking plants
Copper foam from Goodfellow combines the outstanding thermal conductivity of copper with the structural benefits of a metal foam. These features are of particular interest to design engineers working in the fields of medical products and devices, defense systems and manned flight, power generation, and the manufacture of semiconductor devices. This product has a true skeletal structure with no voids, inclusions, or entrapments. A perennial favorite of Designfax readers.
Learn more.
With Xometry's PolyJet 3D-printing service, you can order full-color 3D prints easily. Their no-cost design guide will help you learn about different aspects of 3D printing colorful parts, how to create and add color to your models, and best practices to keep in mind when printing in full color. Learn how to take full advantage of the 600,000 unique colors available in this flexible additive process.
Get the Xometry guide.
Have you ever 3D printed a part that had flat spots or faceted surfaces where smooth curves were supposed to be? You are not alone, and it's not your 3D printer's fault. According to Markforged, the culprit is likely a lack of resolution in the STL file used to create the part.
Read this detailed and informative Markforged blog.
Put your knowledge to the test by trying to answer these key questions on how to choose the right high-temperature-resistant adhesive. The technical experts from Master Bond cover critical information necessary for the selection process, including questions on glass transition temperature and service temperature range. Some of the answers may surprise even the savviest of engineers.
Take the quiz.
One of the primary benefits of using a coiled spring pin to affix a hub or gear to a shaft is the coiled pin's ability to prevent hole damage. Another is the coiled pin absorbs wider hole tolerances than any other press-fit pin. This translates to lower total manufacturing costs of the assembly. However, there are a few design guidelines that must be adhered to in order to achieve the maximum strength of the pinned system and prevent damage to the assembly.
Read this very informative SPIROL article.
Creo Parametric 11.0 is packed with productivity-enhancing updates, and sometimes the smallest changes make the biggest impact in your daily workflows. Mark Potrzebowski, Technical Training Engineer, Rand 3D, runs through the newest functionality -- from improved surface modeling tools to smarter file management and model tree navigation. Videos provide extra instruction.
Read the full article.
Don't settle for ordinary springs. Opt for Rotor Clip wave springs. A wave spring is a type of flat wire compression spring characterized by its unique waveform-like structure. Unlike traditional coil springs, wave springs offer an innovative solution to complex engineering challenges, producing forces from bending, not torsion. Their standout feature lies in their ability to compress and expand efficiently while occupying up to 50% less axial space than traditional compression springs. Experience the difference Rotor Clip wave springs can make in your applications today!
View the video.
JW Winco's printed Standard Parts Handbook is a comprehensive 2,184-page reference that supports designers and engineers with the largest selection of standard parts categorized into three main groups: operating, clamping, and machine parts. More than 75,000 standard parts can be found in this valuable resource, including toggle clamps, shaft collars, concealed multiple-joint hinges, and hygienically designed components.
Get your Standard Parts Handbook today.
Watch Smalley's quick explainer video to see how engineer Frank improved his product designs by switching from traditional coil springs to compact, efficient wave springs. Tasked with making his products smaller while keeping costs down, Frank found wave springs were the perfect solution.
View the video.
You can improve the design and cost of your die cast parts with these top tips from Xometry's Joel Schadegg. Topics include: Fillets and Radii, Wall Thicknesses, Ribs and Metal Savers, Holes and Windows, Parting Lines, and more. Follow these recommendations so you have the highest chance of success with your project.
Read the full Xometry article.
3D Systems unveiled several new solutions at the RAPID+TCT 2025 show in April designed to change the way industries innovate. From new 3D printers and materials for high-mix, low-volume applications to marked improvements in how investment casting can be done, learn what is the state of the art from the original inventors of 3D printing.
Read the full article.
JW Winco has developed a new type of indexing plunger -- GN 824 -- that can independently latch into edges and grooves. This is made possible by a chamfered plunger pin. When the chamfered pin encounters a raised latching geometry, it retracts and then springs back out again once it reaches the latching point. This new indexing plunger can be ordered with axial thread for fastening and a black plastic knob for operating the indexing plunger. In a clever design, the plunger pin can be adjusted by 360 degrees to ensure that it encounters the mating surface perpendicularly. This hardware is well suited for transport frames, mechanisms, or covers that need to be locked in place quickly and securely, especially without the need for manual intervention.
Learn more.
IMAO Fixtureworks has expanded its One-Touch Fastener lineup to include a new quarter-turn clamping fastener that features an innovative flat design and is ideal for clamping in limited spaces. The QCFC flat quarter-turn fastener has a recessed body that protrudes only 2 mm from the mounted surface, a knob that rests flush inside the body, visible ON and OFF markings for safety, and an audible click when fully turned to clamped or unclamped position.
Learn more.
Helios Technologies has expanded its electro-proportional cartridge valve offerings with new solutions (models RPEP and RPEN) from its operating company Sun Hydraulics. These valves fit into the compact T-10A cavity and are rated to a max pressure of 5,000 psi (350 bar). They have a flow capacity of 25 gpm and are fully compatible with the XMD Mobile Driver, which was co-developed with sister operating company Enovation Controls. The RPEP is well suited for industrial machines like a hydraulic press, which requires precise pressure regulation. The RPEN is well suited for mobile fan drive applications to dynamically control fan speed and ensure proper temperature regulation.
Learn more.
Renishaw's new dual-laser RenAM 500D metal additive manufacturing machine has been designed to offer exceptional product quality and productivity for a wider range of budgets. The RenAM 500D features two 500-W lasers that can access the entire build platform, delivering superior performance when compared with single-laser systems. Additionally, the RenAM 500D Ultra, fitted with Renishaw's TEMPUS technology, allows the laser to fire while the recoater is moving, saving up to nine seconds per build layer and reducing cost per part. This also helps to deliver a production speed up to three times faster than conventional single-laser systems. Many more features.
Learn more.
[Photo: Christopher O'Bryan]
For the millions of people every year who have or need medical devices implanted, a new advancement in 3D-printing technology developed at the University of Florida promises significantly quicker implantation of devices that are stronger, less expensive, more flexible, and more comfortable than anything currently available.
In a paper published May 10 in the journal Science Advances, researchers lay out the process they developed for using 3D printing and soft silicone to manufacture items that millions of patients use: ports for draining bodily fluids, implantable bands, balloons, soft catheters, slings, and meshes.
VIDEO: Silicone is 3D printed into the micro-organogel support material. The printing nozzle follows a predefined trajectory, depositing liquid silicone in its wake. The liquid silicone is supported by the micro-organgel material during this printing process.
Currently, such devices are molded, which could take days or weeks to create customized parts designed to fit an individual patient. The 3D-printing method cuts that time to hours, potentially saving lives. What's more, extremely small and complex devices, such as drainage tubes containing pressure-sensitive valves, simply cannot be molded in one step.
With the UF team's new method, however, they can be printed.
"Our new material provides support for the liquid silicone as it is 3D printing, allowing us create very complex structures and even encapsulated parts out of silicone elastomer," said lead author Christopher O'Bryan, a mechanical and aerospace engineering doctoral student in UF's Herbert Wertheim College of Engineering and lead author on the paper.
It also could pave the way for new therapeutic devices that encapsulate and control the release of drugs or small molecules for guiding tissue regeneration or assisting diseased organs such as the pancreas or prostate.
The cost savings could be significant as well.
"The public is more sensitive to the high costs of medical care than ever before. Almost monthly we see major media and public outcry against high health care costs, wasteful spending in hospitals, exorbitant pharmaceutical costs," said team member Tommy Angelini, an associate professor of mechanical and aerospace. "Everybody agrees on the need to reduce costs in medicine."
The new method was born out of a project Angelini and his team have been working on for several years: printable organs and tissues. To that end, the team made a significant discovery two years ago when it created a revolutionary way to manufacture soft materials using 3D printing and microscopic hydrogel particles as a medium.
The problem was, the previous granular gel materials were water-based, so they were incompatible with oily "inks" like silicone. It was literally a case of trying to mix oil and water.
To solve that problem, the team came up with an oily version of the microgels.
"Once we started printing oily silicone inks into the oily microgel materials, the printed parts held their shapes," Angelini said. "We were able to achieve really excellent 3D-printed silicone parts -- the best I've seen."
VIDEO: Water is pumped from one reservoir to another using a 3D-printed silicone valve. The silicone valve contains two encapsulated ball valves that allow water to be pumped through the valve by squeezing the lower chamber. The silicone valve demonstrates the ability of the new 3D-printing method to create multiple encapsulated components in a single part -- something that cannot be done with a traditional 3D-printing approach.
Manufacturing organs and tissues remains a primary goal, but one that is likely many years away from reality.
Not so with the medical implants.
"The reality is that we are probably decades away from the widespread implanting of 3D-printed tissues and organs into patients," Angelini said. "By contrast, inanimate medical devices are already in widespread use for implantation. Unlike the long wait we have ahead of us for other 3D-bioprinting technologies to be developed, silicone devices can be put into widespread use without technologically limited delay."
Other members of the UF team are Tapomoy Bhattacharjee, Samuel Hart, Christopher P. Kabb, Kyle D. Schulze, Indrasena Chilakala, Brent S. Sumerlin, and Greg Sawyer.
Source: University of Florida
Published May 2017