November 14, 2017 Volume 13 Issue 42

Mechanical News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Engineer's Toolbox: How to design the optimum hinge

Although many pin styles are available, Coiled Spring Pins are particularly well suited for use in both friction- and free-fit hinges. To achieve optimum long-term hinge performance, designers should observe these helpful design guidelines from SPIROL.
Read the full article.


Innovative new robo welding gun

Comau's newest N-WG welding gun is designed for high-speed spot welding for traditional, hybrid, and electric vehicles, in addition to general industry sectors. It features a patented, single-body architecture that enables rapid reconfiguration between welding types and forces, and it delivers consistent performance across a broad range of applications, including steel and (soon) aluminum welding. It supports both X and C standard gun configurations, has fast arm exchange, and universal mounting options. It is fully compatible with major robot brands and represents a significant advancement in spot welding performance and cost efficiency.
Learn more.


What's a SLIC Pin®? Pin and cotter all in one!

The SLIC Pin (Self-Locking Implanted Cotter Pin) from Pivot Point is a pin and cotter all in one. This one-piece locking clevis pin is cost saving, fast, and secure. It functions as a quick locking pin wherever you need a fast-lock function. It features a spring-loaded plunger that functions as an easy insertion ramp. This revolutionary fastening pin is very popular and used successfully in a wide range of applications.
Learn more.


Engineering challenge: Which 3D-printed parts will fade?

How does prolonged exposure to intense UV light impact 3D-printed plastics? Will they fade? This is what Xometry's Director of Application Engineering, Greg Paulsen, set to find out. In this video, Paulsen performs comprehensive tests on samples manufactured using various additive processes, including FDM, SLS, SLA, PolyJet, DLS, and LSPc, to determine their UV resistance. Very informative. Some results may surprise you.
View the video.


Copper filament for 3D printing

Virtual Foundry, the company that brought us 3D-printable lunar regolith simulant, says its popular Copper Filamet™ (not a typo) is "back in stock and ready for your next project." This material is compatible with any open-architecture FDM/FFF 3D printer. After sintering, final parts are 100% pure copper. Also available as pellets. The company says this is one of the easiest materials to print and sinter. New Porcelain Filamet™ available too.
Learn more and get all the specs.


Copper foam -- so many advantages

Copper foam from Goodfellow combines the outstanding thermal conductivity of copper with the structural benefits of a metal foam. These features are of particular interest to design engineers working in the fields of medical products and devices, defense systems and manned flight, power generation, and the manufacture of semiconductor devices. This product has a true skeletal structure with no voids, inclusions, or entrapments. A perennial favorite of Designfax readers.
Learn more.


Full-color 3D-printing Design Guide from Xometry

With Xometry's PolyJet 3D-printing service, you can order full-color 3D prints easily. Their no-cost design guide will help you learn about different aspects of 3D printing colorful parts, how to create and add color to your models, and best practices to keep in mind when printing in full color. Learn how to take full advantage of the 600,000 unique colors available in this flexible additive process.
Get the Xometry guide.


Tech Tip: How to create high-quality STL files for 3D prints

Have you ever 3D printed a part that had flat spots or faceted surfaces where smooth curves were supposed to be? You are not alone, and it's not your 3D printer's fault. According to Markforged, the culprit is likely a lack of resolution in the STL file used to create the part.
Read this detailed and informative Markforged blog.


Test your knowledge: High-temp adhesives

Put your knowledge to the test by trying to answer these key questions on how to choose the right high-temperature-resistant adhesive. The technical experts from Master Bond cover critical information necessary for the selection process, including questions on glass transition temperature and service temperature range. Some of the answers may surprise even the savviest of engineers.
Take the quiz.


Engineer's Toolbox: How to pin a shaft and hub assembly properly

One of the primary benefits of using a coiled spring pin to affix a hub or gear to a shaft is the coiled pin's ability to prevent hole damage. Another is the coiled pin absorbs wider hole tolerances than any other press-fit pin. This translates to lower total manufacturing costs of the assembly. However, there are a few design guidelines that must be adhered to in order to achieve the maximum strength of the pinned system and prevent damage to the assembly.
Read this very informative SPIROL article.


What's new in Creo Parametric 11.0?

Creo Parametric 11.0 is packed with productivity-enhancing updates, and sometimes the smallest changes make the biggest impact in your daily workflows. Mark Potrzebowski, Technical Training Engineer, Rand 3D, runs through the newest functionality -- from improved surface modeling tools to smarter file management and model tree navigation. Videos provide extra instruction.
Read the full article.


What's so special about wave springs?

Don't settle for ordinary springs. Opt for Rotor Clip wave springs. A wave spring is a type of flat wire compression spring characterized by its unique waveform-like structure. Unlike traditional coil springs, wave springs offer an innovative solution to complex engineering challenges, producing forces from bending, not torsion. Their standout feature lies in their ability to compress and expand efficiently while occupying up to 50% less axial space than traditional compression springs. Experience the difference Rotor Clip wave springs can make in your applications today!
View the video.


New Standard Parts Handbook from JW Winco

JW Winco's printed Standard Parts Handbook is a comprehensive 2,184-page reference that supports designers and engineers with the largest selection of standard parts categorized into three main groups: operating, clamping, and machine parts. More than 75,000 standard parts can be found in this valuable resource, including toggle clamps, shaft collars, concealed multiple-joint hinges, and hygienically designed components.
Get your Standard Parts Handbook today.


Looking to save space in your designs?

Watch Smalley's quick explainer video to see how engineer Frank improved his product designs by switching from traditional coil springs to compact, efficient wave springs. Tasked with making his products smaller while keeping costs down, Frank found wave springs were the perfect solution.
View the video.


Top die casting design tips

You can improve the design and cost of your die cast parts with these top tips from Xometry's Joel Schadegg. Topics include: Fillets and Radii, Wall Thicknesses, Ribs and Metal Savers, Holes and Windows, Parting Lines, and more. Follow these recommendations so you have the highest chance of success with your project.
Read the full Xometry article.


Who knew machine shakes were such a problem? 3D printing gets a turbo boost from U-M technology

A new algorithm allows 3D printers to "read ahead" of their programming to boost speeds by proactively dealing with machine shaking.

By James Lynch, University of Michigan Engineering

University of Michigan (U-M) Engineering researchers have developed filtered b-spline (FBS) algorithms to speed up consumer 3D printers without sacrificing quality. The research was conducted in the Smart and Sustainable Automation Research Lab at the University of Michigan College of Engineering under associate professor of mechanical engineering Chinedum Okwudire. The research was led by PhD candidates Deokkyun Yoon and Molong Duan.

A major drawback to 3D printing -- the slow pace of the work -- could be alleviated through a software algorithm developed at the University of Michigan. The algorithm allows printers to deliver high-quality results at speeds up to two times faster than those in common use, with no added hardware costs.

One of the challenges for today's 3D printers lies in vibrations caused as they work. A printer's movable parts, particularly in lightweight desktop models, cause vibrations that reduce the quality of the item being produced. And the faster the machine moves, the more vibrations are created.

On the bottom, vibrations from the 3D printer caused the printhead to offset multiple times when the printer was pushed to ~2X speed. On the top, the new U-M algorithm was applied to the printer, enabling a successful print. Both U.S. Capitol replicas were printed on a HICTOP Prusa i3 3D printer. [Photo: Evan Dougherty, Michigan Engineering]

 

 

 

 

"Armed with knowledge of the printer's dynamic behavior, the program anticipates when the printer may vibrate excessively and adjusts its motions accordingly," said Chinedum Okwudire, an associate professor of mechanical engineering who directs U-M's Smart and Sustainable Automation Research Lab.

To ensure details are reproduced accurately, the machines are operated slowly. This snail's pace is one of the factors that has prevented the technology finding a broader audience.

Okwudire cited statements made last year by one 3D-printing company executive about the issues holding the industry back.

"We're just waiting for the next evolution of the technology," Simon Shen, CEO of XYZPrinting, told TechCrunch last year. "If they can do it much faster, more precise and easier, that will bring more people to 3D printers. Not waiting for four to six hours for a print, but 40 to 60 minutes."

VIDEO: Algorithms for faster 3D printing.

In explaining how his algorithm works, Okwudire uses the example of someone trying to deliver a speech in a large hall. To reach ears in the farthest rows, that speaker will have to shout.

Should someone produce a megaphone, and the speaker still continues to shout, their voice will be overly amplified and cause the audience to squirm. Using the megaphone in a normal voice, however, produces the right clarity and volume.

"Our software is like that person who realizes their voice is going to be overly amplified," Okwudire said. "It acts preemptively because it knows that the behavior of the printer is going to be ahead of time."

"Eventually, one of the places we would want to see the algorithm applied is in the firmware -- the software that runs on the printer itself," he said. "That way, it will be integrated with the printers, regardless of the size."

Okwudire said his software can also be used on a variety of industrial-grade machines that suffer from similar limitations due to vibrations.

The journal Mechatronics recently published the lab's findings in a paper titled: "A limited-preview filtered B-spline approach to tracking control -- with application to vibration-induced error compensation of a 3D printer." You can read the paper here.

Published November 2017

Rate this article

[Who knew machine shakes were such a problem? 3D printing gets a turbo boost from U-M technology]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2017 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy