![]() |
May 29, 2018 | Volume 14 Issue 20 |
Manufacturing Center
Product Spotlight
Modern Applications News
Metalworking Ideas For
Today's Job Shops
Tooling and Production
Strategies for large
metalworking plants
Inbolt and FANUC are launching a manufacturing breakthrough enabling FANUC robots to tackle one of the most complex automation challenges: performing production tasks on continuously moving parts at line speeds. With Inbolt's AI-powered 3D vision, manufacturers can now automate screw insertion, bolt rundown, glue application, and other high-precision tasks on parts moving down the line without costly infrastructure investments or cycle time compromises.
Learn more.
THK has developed its best-performing, high-speed rotary bearing ever: the High-Speed, Double-Row Angular Contact Ring BWH. This rotary bearing has balls aligned inside a cage between the inner and outer rings and is part of the THK Rotary Series, along with the cross-roller ring. The main features of this product are its ability to receive loads in all directions as well as its high rigidity and rotational accuracy, which are equal to that of cross-roller rings. By adopting a new structure to change the rolling elements from rollers to balls, this product achieves the greatest high-speed performance ever offered by THK.
Learn more.
As semicon-ductors and optical components become smaller and more sophisticated, the TZ Series of precision elevating tables from IKO International provides exceptional vertical positioning accuracy in a compact size. This unit features a unique wedge mechanism guided in the vertical direction by a pair of IKO C-Lube Super MX linear motion rolling guides arranged in parallel to achieve highly precise positioning with exceptional rigidity. An optional linear encoder provides full closed loop control to achieve positioning accuracy as high as 0.005 mm, with repeatability of +/-0.001 mm.
Learn more and get all the specs.
The COBOTTA PRO from DENSO Robotics is a lightweight, high-speed collaborative robot designed for communication between workers and robots while maximizing productivity. It delivers a blend of productivity and safety for both simple tasks and multi-step processes like assembly and inspection work. The 6-axis unit operates at speeds up to 2,500 mm per sec when no workers are near and slows or stops when people approach. Two models available: PRO 900 (max payload 6 kg) and PRO 1300 (max payload 12 kg). Many more functions and features.
Learn more.
New powerful, low-profile, pull-type clapper solenoids are available from Magnetic Sensor Systems (MSS). Applications include valve control, locks, starters, ventilators, clamping, sorting, appliances, tools, HVAC, brakes, clutches, switches, mixing, fire suppression systems, door controls, detent latches, and more. The S-16-264 Series of 17 Pull-Type Clapper Solenoids have ampere turns (windings) adjusted to meet the specific force and duty cycle requirements of your application. They provide up to 130 lb (578 N) of force.
Get all the specs for these solenoids and other options.
Bishop-Wisecarver provides a quick, very useful guide to help you evaluate the right drive strategy for your system: belt, screw, or chain-driven actuator. Each drive type has unique advantages and limitations, so evaluating all your options will help you find the most suitable actuator setup for your specific application needs.
Read the Bishop-Wisecarver blog.
PI, a global leader in precision motion control and nanoposi-tioning, now offers fast delivery of the L-511 linear micropositioning stage, which is designed for applications requiring minimum incremental motion down to 20 nm, drive forces up to 22 lb, and multi-axis configuration options. The L-511 can be combined to form XY or XYZ motion systems and integrated with rotary stages. A variety of drive and encoder options (stepper and servo motors, rotary, and linear encoders) enable ultra-fine sensitivity. Applications include: metrology, laser processing, semiconductors, biotech, optical alignment, and advanced automation.
Learn more and get all the specs.
According to the experts at Lin Engineering, there are two primary types of stepper motors to consider: permanent magnet (PM) and hybrid. But which is right for your application? Both types have their advantages and disadvantages, and the choice ultimately depends on your specific requirements.
Read this informative Lin Engineering article.
The new drylin WWP linear guide from igus features a PTFE-free locking carriage. Engineered from lubrication-free, high-performance polymers and aluminum, the guide offers a lightweight, hygienic, and low-maintenance alternative to complex mechanical and electronic adjustment systems. It is significantly more compact and lightweight than conventional recirculating ball-bearing systems. Applications include interior components in vehicles, aircraft, and furniture.
Learn more and get all the specs.
MAXXDRIVE industrial gear units from NORD DRIVE-SYSTEMS are an established drive solution for heavy-duty applications. In addition to conveying, lifting, and driving, they also play an important role in mixing and agitating systems. MAXXDRIVE units feature a compact, one-piece UNICASE housing that delivers long service life, easy maintenance, and quiet operation. Their robust design handles high axial and radial loads, achieves output torques up to 2,495,900 lb-in., and powers up to 8,075 hp.
Learn more.
According to PBC Linear, their new non-captive linear actuators are different from the more common external versions of lead screw-driven linear actuators because they allow the lead screw to completely pass through the motor. This fundamental difference offers advantages for designs that have limited space available or for engineers looking to shrink the overall size of their design package.
Read the full PBC Linear blog.
Güdel Inc. is highlighting new technologies at Automate 2025 booth #2418 that demonstrate its unmatched ability to solve automation engineering challenges. One is the Cobomover, a 7th-axis linear track purpose-built for collaborative and lightweight robots. Designed and manufactured in Switzerland, this unit extends the working range of robots up to 5 m, allowing them to operate multiple workstations and perform a variety of tasks without manual repositioning. Compatible with over 60 cobots and small traditional robots.
Learn more and get all the specs.
ThruSight-Focus is a high-performance, compact motion platform specifically engineered for applications requiring dual-side access to the sample or workpiece. It pairs ALIO's monolithic open-center XY stage -- known for its nanometer-level precision, crossed roller bearings, and direct linear drives -- with a novel Z-wedge mechanism that converts horizontal drive force into vertical motion via direct drive. This innovative architecture eliminates backlash, enhances servo responsiveness, and delivers fast, stable Z-axis movements -- all within a low-profile footprint.
Learn more.
Intelligent power management company Eaton launched a new differential engineered specifically for electric vehicles at Auto Shanghai 2025 in China. The innovative design addresses the unique challenges presented by EV propulsion systems, including shared low-viscosity oil environments, increased sensitivity to noise, and the demands of high and instant torque delivery.
Read the full article.
Applied Motion Products has introduced the MDX+ series, a family of low-voltage servo systems that integrate a servo drive, motor, and encoder into one package. This all-in-one drive is an ideal solution for manufacturers in logistics, AGV, medical, semiconductor, the solar industries, and many others.
Read the full article.
The Air Force Research Laboratory recently demonstrated the capabilities of the Advanced Automation for Agile Aerospace Applications (A5) Robotic System at the Southwest Research Institute in San Antonio for government and industry representatives. The robotic system is the first multi-purpose robot designed for use on the aerospace factory floor capable of using real-time sensor feedback to conduct work in a localized environment. [U.S. Air Force courtesy photo/released]
By Marisa Alia-Novobilski, Air Force Research Laboratory
Engineers from the Manufacturing Technologies Division, Air Force Research Laboratory, held a recent successful demonstration of the advanced capabilities of the Advanced Automation for Agile Aerospace Applications (A5) Robotic System at the Southwest Research Institute in San Antonio, TX.
The 22,000-lb A5 robotic system is the first multi-purpose robot designed for use on the aerospace factory floor capable of using real-time sensor feedback to conduct work in a localized environment. By capitalizing on advancements in man-machine interfacing technologies, the A5 robot is anticipated to cut depot maintenance times for aircraft coating removal up to 50 percent, saving time and money over the lifecycle of the platform.
"Robots have been used for a long time in factories and in the automotive industry, however, there has been limited use in the aerospace engineering area," says Rick Meyers, an Automation and Robotics Program Manager at the AFRL. "Typically, robotic arms are bolted into place and perform repetitive actions as a platform moves down a line. The A5 robot is mounted on a mobile platform that allows it to move about an aircraft. A human operator interfaces with the onboard computer, and the robot plans and completes the manual tasks."
Unique to the A5 is the ability for it to use advanced sensors to conduct real-time path planning and analysis as it moves around an aircraft. Sensor data is transmitted to an onboard computer that processes the information and provides an optimized path plan for maintenance activity to an operator for confirmation. This processing ability enables the A5 to adapt to multiple platforms without the need for system reprogramming, which adds time and cost to maintenance efforts.
VIDEO: See the A5 in action.
"One depot may spend upwards of 40,000 labor hours or more on just sanding and paint removal activities. This is labor intensive, exhausting, and repetitive work. Robots are suited for these types of repetitive tasks, freeing the maintainers to partner with the machines as operators versus laborers. Robotics provide an opportunity for humans and machines to team up to help meet an Air Force need," says Meyers.
The A5 robot program is nearing the end of its Phase I effort, which focused on developing an adaptive robotic sanding capability for the C-17. Following the successful demonstration on a mock-up aircraft during the recent San Antonio event, the A5 system will be tested on an actual C-17 at Warner Robins Air Force Base this fall.
The AFRL team is still in the process of defining A5's next application, though they are considering pursuing development efforts focused on nondestructive inspection or composite repair. In any case, the robotic expertise developed over the course of this project combined with the ability to leverage cutting-edge technology for the warfighter is a big step toward realizing the AFRL vision for advanced robotics in the defense environment.
"The future aerospace manufacturing environment will feature flexible and reconfigurable robotic systems that work in close proximity with the human workforce," says Meyers. "The A5 robot demonstration is an initial step toward enabling this vision to be commonplace in the defense manufacturing domain."
Published May 2018