March 05, 2019 Volume 15 Issue 09

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Tbot Linear Robot systems with fixed motor mounting are perfect for pick and place

Macron Dynamics' belt-driven X/Z T-Bot systems (TBG line) are perfect for pick-and-place processes. The simple design, where a single belt drives both axes, means there is no need for costly cable carriers. This type of motion can be used for anything pick-and-place oriented, and the extruded construction means it can scale to virtually any application. The architecture of the line allows for smaller travel heights for the Z axis, providing a more compact structure that is easier to integrate into existing designs. Models available to handle max loads from 10 to 100 lb.
Learn more.


Get your cobots on track ... literally

Thomson Industries has released what it is calling "the first-ever true collaborative extension of cobots." Adding a horizontal operating range up to 10 m, the MovoTrak CTU (cobot transfer unit) 7th axis sets itself apart with collision detection that stops the cobot when it encounters an obstacle, facilitating collaboration and increasing productivity. An industrial robot transfer unit (RTU) has also launched, which can be easily integrated with a user's preferred motor and drive. Compatible with even the largest cobots, such as the UR20 and UR30.
Learn more.


Versatile linear actuator with high load capacity

The GL-N is a versatile actuator from THK that boasts a durable design and high movement load capacity thanks to dual linear guide rails. It is ideal for automation and packaging applications, delivering high precision, durability, and efficiency. GL-N-B features a lightweight, high-rigidity aluminum base with Caged Ball LM guides. GL-N-BS adds a QZ Lubricator for the ball screw for long-term, maintenance-free operation.
Learn more.


Next-gen motor for pump and fan applications

The next evolution of the award-winning Aircore EC motor from Infinitum is a high-efficiency system designed to power commercial and industrial applications such as HVAC fans, pumps, and data centers with less energy consumption, reduced emissions, and reduced waste. It features an integrated variable frequency drive and delivers upward of 93% system efficiency, as well as class-leading power and torque density in a low-footprint package that is 20% lighter than the previous version. Four sizes available.
Learn more.


What is a low-waving linear motion guide?

If you are having a problem with your linear guides not always staying perfectly straight during use, it may be due to a phenomenon called waving -- a problem that is particularly critical in high-precision markets such as semiconductor and LCD equipment-related applications or machine tools. Thankfully, THK has an answer.
Read the full article.


OnRobot Sander: Ultimate solution for precision finishing tasks

Sanding is now more versatile and precise. Save time and enhance efficiency while maintaining consistent quality. With easy integration, remote monitoring, and dust-free operation, OnRobot Sander is a valuable addition to any workflow. This tool offers precise control over sanding parameters and is suitable for various materials, making it a must-have for professionals in the finishing industry.
Learn how to build your sanding application.
Learn more about OnRobot Sander.


Drive gearboxes for mobile robots

Different automated guided vehicles (AGVs) and autonomous mobile robots (AMRs) can require different types of wheel drives. GAM has all your needs covered from standard GML inline planetary gearboxes to integrated strain wave (harmonic) robotic gearboxes to modified and fully custom solutions. Check out all the offerings.
Learn more.


Universal Robots unveils cobot AI Accelerator

Universal Robots' new UR AI Accelerator is a ready-to-use hardware and software toolkit created to further enable the development of AI-powered cobot applications. Designed for commercial and research applications, the UR AI Accelerator provides developers with an extensible platform to build applications, accelerate research, and reduce time to market of AI products -- ready to use straight out of the box.
Learn more.


Z-Tip-Tilt nanopositioning stage: High-speed ultra precision

PI offers an ultra-low-profile Z-Tip-Tilt stage designed for demanding alignment applications in optics, semicon-ductors, precision assembly, and photonics. Based on air bearings and linear motors, the stage is wear-free, maintenance-free, and cleanroom compatible. High speed is ensured by 3-phase linear motors, while high resolution and precision are provided by closed-loop operation with linear encoders with 1-nm resolution. Comes in 5- and 6-axis combinations.
Learn more.


Curtiss-Wright unveils new Exlar GTF food-grade actuator

Curtiss-Wright's Actuation Division has expanded its popular Exlar electric actuator product offerings to include hygienic actuators with FDA-approved materials and finishes. Designed for automation systems in the food and beverage, packaging, and pharmaceutical industries, the GTF with inverted roller screw technology helps customers achieve hygienic certifications more economically. Ideal for builders of hygienic machinery to easily incorporate into their designs.
Learn more.


Robot has longest reach in Mitsubishi's low-cost series

The MELFA RV-12CRL vertically articulated robot has the longest reach of any robot in Mitsubishi Electric's low-cost robot series: 1,504 mm (59.2 in.). With a 12-kg (26.4-lb) payload capacity, this unit is an ideal candidate for machine tending, case packing, and pick-and-place applications. Built-in features provide enhanced safety, streamlined implementation, and an overall reduction in downtime. Features internal cables and air hoses for end-of-arm tooling.
Learn more.


Servomotors for food, beverage, pharma, more

Siemens' new stainless steel SIMOTICS S-1FS2 line of servomotors has been designed for the clean condition requirements of the food, beverage, sterile packaging, pharma, and other process industries. These motors are highly resistant to corrosion and acidic chemicals and are offered in a variety of power ratings, from 0.45 to 2 kW (0.60 to 2.68 hp) with torque from 3.1 to 14 Nm (2.28 to 10.32 ft-lb). Features include high dynamics due to low inherent inertia, high overload capacity for pick-and-place, and precise movement of heavy loads. Easy installation and cleaning. Compatible with the SINAMICS S210 drive system.
Learn more.


What is Sensorless Closed Loop? Precise motor control without an encoder

Matt Sherman, eMobility Sales and Application Engineer at KEB America, runs through different options to drive an AC motor, including one called "Sensorless Closed Loop" that does not require additional hardware such as encoder, resolver, or cables on the motor.
Read this informative KEB America blog.


All about magnetic rotary encoder

The precision and reliability offered by modern rotary encoders are essential in many product categories. These include robotics, machine tools, printing presses, motion control systems, medical equipment, aerospace, gaming and entertainment, and automotive. Learn all about magnetic rotary encoders -- and important developments in the technology's future.
Read the full Avnet article.


High-force actuator line expanded with new models

Tolomatic has introduced five new products in its RSX line of high-force actuators to meet a wider range of industrial applications. These five sizes expand the RSX's capabilities to include forces up to 66,000 lbf (294 kN). RSX actuators, which feature high-precision planetary roller or ball screws for longer life in harsh environments, enable the easy replacement of traditional hydraulics to eliminate leaks and improve system performance.
Learn more.


700,000 submunitions demilitarized by Sandia-designed robotics system

Sandia National Laboratories scientists built and programmed an automated robotic system at the Anniston Munitions Center in Alabama to demilitarize Multiple Launch Rocket System submunitions for the Army. [Photo by Regina Valenzuela]

 

 

 

 

More than 700,000 Multiple Launch Rocket System submunitions have been demilitarized since the Army started using an automated nine-robot system conceptualized, built, and programmed by Sandia National Laboratories engineers.

"This is by far the most complex, automated robotic demilitarization system that Sandia has built in the last 20 years," said computer scientist Bill Prentice, Sandia software lead for the project. "This is exactly the kind of thing to use robotics for -- to get humans out of harm's way. Let the automation of robots do what they do well, and have humans make advanced decisions on safety."

The automated system, owned by the Army, is located at the Anniston Munitions Center's Multiple Launch Rocket System Recycle Facility in Alabama. The system was built for the Army's demilitarization program that aims to dismantle obsolete ammunition and missiles. The project was funded and managed through the Department of Defense.

The system safely reduces the stockpile of Multiple Launch Rocket System munitions that have been in storage, and it enables the Army to recycle rocket materials -- capabilities that did not exist. The Army can now recycle the rockets' aluminum warhead skin, steel grenade bodies, and copper.

Speeding up the process of demilitarization also reduces costs. The automated robotic system is designed to demilitarize up to 21 warheads per eight-hour shift.

"We were able to remove people from a potentially very dangerous situation and created something that allowed products to be recycled and reused, which is what the DOD demilitarization program is about," said project lead Walt Wapman, a mechanical engineer.

Humans still oversee operations, learn to run the advanced robotics system, and watch the process on live feeds in a control room. Computer vision, which is a form of artificial intelligence using digital images from cameras, can detect abnormalities during the demilitarization process and alert operators who determine if there is a safety concern.

How the system works
All system robots are commercial off-the-shelf robots that were customized and programmed by Sandia engineers to do specific tasks.

"There are 644 grenades per warhead, and our job is to take these tightly packed, columnated grenades in the warhead foam packs and demilitarize them," Prentice said.

The system is organized into nine "cells." The first cell is the weapons disassembly system where warheads are cut into separate foam pack sections. The foam packs filled with grenades are then delivered to cells 2 and 3, where the grenades are removed from the foam packs. From there, individual grenades are delivered to cells 4 through 9, where the fuses are detached. Once the fuses are detached, the munitions have been disarmed.

The system can pick up and place foam packs and grenades in precise orientations, and lock and rotate the grenades to examine and remove fuses in a safe way, Prentice said.

This automated system demilitarizes warheads by cutting them into separate sections, removing foam packs filled with grenades, and detaching grenade fuses. [Photo by Regina Valenzuela]

 

 

 

 

For more than three years, Prentice said he put his heart and soul into the robotic system. He and a small team used three computer languages to program the nine robot cells, tested the system, and traveled back and forth to Alabama while the robotic work cells were assembled and tested.

"Part of the challenge is when you demilitarize warheads like this, you're working on munitions that are 10, 20, 30 years old," Prentice said. "You test on inert munitions that are in pristine condition, but when you start cutting apart warheads and looking at live grenades, they might have some environmental effects that cause process abnormalities, such as grenades being stuck together during removal."

System is part of Sandia's long robotics history
Prentice said Sandia has been involved in robotics for more than 20 years and the demilitarization business for at least 18 years. Wapman led the demilitarization program at Sandia for most of that time.

"I'd say that what Sandia really brought to the table was an integrated, small team that took a blank sheet of paper and made a nine-robot automated system with 55 cameras, hundreds of sensors, and a lot of exceptional designs, enabling us to deliver a reliable system to the Army that's been safe," Wapman said.

Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration.

Source: Sandia

Published March 2019

Rate this article

[700,000 submunitions demilitarized by Sandia-designed robotics system]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2019 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy