August 27, 2019 Volume 15 Issue 32

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Pinpoint the leading cause of Industrial Ethernet failures

Fluke Networks introduces the LinkIQ-IE Cable+Network Industrial Ethernet Tester designed to troubleshoot network cabling, the leading cause of Industrial Ethernet failures. With Ethernet-based technologies increasingly the default for automation networks, the need for easy-to-use tools to troubleshoot these networks is growing rapidly. By combining Fluke Networks' state-of-the-art cable measurement technology and basic tests for Industrial Ethernet switches, LinkIQ-IE speeds and simplifies the discovery of network failures in a simple-to-use touchscreen interface akin to a smartphone.
Learn more.


Premium Hi-Temp ETX Series thermoelectric coolers

Laird Thermal Systems has developed a thermoelectric module series that is rated for high temperature in emerging optoelectronic applications, including LiDAR and CMOS sensors for autonomous systems in vehicles and drones, digital light processors (DLP) used in 3D machine vision and advanced lighting systems, and optical transceivers. The HiTemp ETX Series thermoelectric cooler has a robust construction that allows it to survive in temperatures up to 150 C, exceeding most outdoor applications. These solid-state heat pumps are assembled with advanced materials that boost cooling capacity by up to 10% compared to traditional thermoelectric coolers.
Learn more.


Compact power module with side flange mounting

SCHURTER's proven power entry module, series DD11, provides a high level of functional integration in the most minimal of package dimensions. The power module is ideally suited for equipment with low-profile panels. Consisting of an IEC appliance inlet (C14), which is compatible with cord retention, 1- or 2-pole fuse holder, and power ON/OFF switch, the DD11 is now available with side mounting flanges in addition to the existing model with top and bottom flanges. The new model is designed to minimize height when vertically mounted. Applications include medical, IT and telecom, office and household equipment, and automation systems.
Learn more.


Automotive Ethernet cables

The ODU MINI-SNAP for Single Pair Ethernet (SPE) enables Ethernet connections via copper cables with a single twisted wire pair, while allowing for the voltage supply of terminal devices via PoDL (Power over Data Line). The simpler design of the new generation of connectors and the associated weight and space reduction are good for designers and developers in various areas. SPE is currently being introduced in new automotive generations, replacing CAN and other bus systems. In the future, communication, controls, and security functions will be managed uniformly via Ethernet.
Learn more.


Cool Tools: Complete 3D scan and reverse engineering suite for under 15 grand

Verisurf Software is offering special limited-time pricing on its 3D scanning and reverse engineering solution bundle. It has everything needed to quickly deploy the system, including: Verisurf Scan Data and Reverse Engineering Suite with Quick Surface, Verisurf online training, Peel 2 3D handheld scanner, 1-year hardware warranty, and Peel 2 and Verisurf installation and setup video. The Verisurf Scan Data Reverse Engineering Suite is part of the recently released Verisurf 2020, the only measurement, inspection, and reverse engineering software dedicated to Model-Based Definition (MBD) and built on a CAD/CAM platform.
Learn more.


Asset tracking down to the centimeter

ON Semicon-ductor's Quuppa Intelligent Locating System enables real-time tracking of Bluetooth tags and devices -- with centimeter-level accuracy even in challenging environments. Quuppa technology allows positioning updates to be sent up to 50 times per second, providing a reliable and versatile Real-Time Locating System (RTLS) solution for all industries. Users can design ultra-low-power indoor asset-tracking applications with Direction Finding features and advanced Angle of Arrival (AoA) technology.
Learn more.


Noncontact measurement of speed and length

With the SPEETEC, SICK has expanded its product range for speed and length measurement of objects moving in a linear path to include technology that measures directly on the material surface. The non-contact sensor is able to measure a wide range of web and continuous materials, as well as blanks, with incredible accuracy. This speed sensor closes the gap between tactile, indirect-measuring encoder solutions and laser velocimeters, which are often expensive to purchase and require considerable effort to integrate and operate.
Learn more.


Displays: New HMI and drive faceplates

ABB's CP600 Gen 2 HMIs offer NEMA 4X rating, an expanded temperature range, 33% brighter screens, additional communications ports, and integral web server capability, allowing users to expand HMI usage into more applications. Available in 7-, 10-, and 15-in. sizes, the CP600 Gen2 HMI units join the CP600-eCo units and the CP600-Pro units to cover the full range of industrial display needs.
Learn more.


Cool Tools: Hexagon RS6 high-speed laser scanner

The handheld or arm-mounted RS6 laser scanner available from Exact Metrology is designed for high-speed and high-accuracy scanning. When compared to other scanners, the RS6 has a 3x faster frame rate, a 30% wider laser stripe, and excellent scanning performance on difficult surfaces (including glossy black plastic automotive body parts or molded carbon fiber components). Its unique SHINE technology allows you to scan 99% of parts without touching the scanner exposure. It scans up to 1.2 million points/sec with a scan rate of 300 Hz.
Learn more.


New Intellistat Ion Air Gun for static elimination

EXAIR's patented Intellistat Ion Air Gun is a handheld and lightweight solution for static elimination in clean processes or sensitive assembly work such as scientific and electronic test facilities, laboratories, and clean rooms. The Intellistat was designed to consume minimal compressed air while simultaneously delivering precise blow-off, and exceptional static decay rates capable of reducing 1000 V to less than 100 V in less than a second at up to 24 in. away.
Learn more.


Automotive cameras get 3-MP res and added cybersecurity

The OX03F10 automotive image sensor from OmniVision expands the company's next-gen ASIL-C viewing camera family with higher 3-MP resolution and cybersecurity features that are required as vehicle designers make the transition from Level 2 and 3 advanced driver assistance systems (ADAS) to higher levels of autonomy. The OX03F10 also maintains the family's unique combination of a large 3.0-micron pixel size with a high dynamic range (HDR) of 140 dB and the best LED flicker mitigation (LFM) performance for minimized motion artifacts. Additionally, the sensor is offered in a 1/2.44-in. optical format and features a four-lane MIPI CSI-2 interface.
Learn more.


Solid-state LiDAR wins CES innovation award

LiDAR sensor provider SOSLAB won the Consumer Electronics Show (CES) 2021 Innovation Awards for its Solid-state LiDAR ML unit for autonomous vehicles in the Vehicle Intelligence and Transportation category. The award recognized the excellence of the ML product, which is a compact LiDAR without moving parts. Its design enables simpler vehicle sensor deployment in terms of size, weight, and stability. ML is easy to mass-produce with a simple structural design that is expected to attract attention in the automotive LiDAR market.
See how it works.


RF filters for space applications

Cobham Advanced Electronic Solutions (CAES) has bolstered its RF Filter portfolio with the addition of new microwave and millimeter-wave filter assemblies specifically designed for space applications. This broad portfolio includes lumped element, combline cavity, and printed filters, as well as multi-filter assemblies. These filters are characterized by low loss and high sensitivity with narrowband with low insertion loss, broadband with low loss at edges, and rejection bandwidth no more than 20% greater than passband bandwidth. CAES RF Filters feature high power capability with greater than 5 W peak power and greater than 1 W average power. Can be optimized for size and weight. Cobham has extensive experience in RF Filters for airborne, missile, and unmanned aerial vehicle (UAV) applications.
Learn more.


Ultra-bright omnidirectional mini LED bulbs

The B305SM series from LEDtronics is an omnidirectional miniature bulb that replaces incandescents directly in critical instrument status indication applications. They produce much brighter light intensity while remaining energy efficient. This bulb features a T3-1/4 (9-mm) single-contact bayonet base that gives installation a familiar twist. It's a great fit for applications such as back lighting, signage, panel-mount pilot lights, accent lighting, and more.
Learn more.


Optimize controls development for electric drives

To make electric vehicles more robust, more economical, and less expensive, their drives use the latest semiconductor technology in combination with complex control systems. The new dSPACE MicroAutoBox III AC Motor Control Solution provides developers with a software connection that enables them to develop complex control algorithms for frequency converters and electric drives. Used in combination with the MicroAutoBox III prototyping system and the DS1553 Interface Module, test drives can be efficiently carried out in the vehicle. Typical applications include the development of drive controls and mechatronic components, such as steering systems or DC/DC converters for combining HV and LV vehicle electrical systems.
Learn more.


Researchers produce electricity by flowing water over extremely thin layers of metal

Scientists from Northwestern University and Caltech have produced electricity by simply flowing water over extremely thin layers of inexpensive metals, including iron, that have oxidized. These films represent an entirely new way of generating electricity and could be used to develop new forms of sustainable power production.

The films have a conducting metal nanolayer (10 to 20 nanometers thick) that is insulated with an oxide layer (2 nanometers thick). Current is generated when pulses of rainwater and ocean water alternate and move across the nanolayers. The difference in salinity drags the electrons along in the metal below.

Water drops on metal nanolayer. Northwestern University and Caltech scientists have produced electricity by flowing water over extremely thin layers of inexpensive metals that have oxidized. [Credit: Franz Geiger, Northwestern University]

 

 

 

 

"It's the oxide layer over the nanometal that really makes this device go," said Franz M. Geiger, the Dow Professor of Chemistry in Northwestern's Weinberg College of Arts and Sciences. "Instead of corrosion, the presence of the oxides on the right metals leads to a mechanism that shuttles electrons."

The films are transparent, a feature that could be taken advantage of in solar cells. The researchers intend to study the method using other ionic liquids, including blood. Developments in this area could lead to use in stents and other implantable devices.

"The ease of scaling up the metal nanolayer to large areas and the ease with which plastics can be coated gets us to three-dimensional structures where large volumes of liquids can be used," Geiger said. "Foldable designs that fit, for instance, into a backpack are a possibility as well. Given how transparent the films are, it's exciting to think about coupling the metal nanolayers to a solar cell or coating the outside of building windows with metal nanolayers to obtain energy when it rains."

The study, titled "Energy Conversion via Metal Nanolayers," was published July 29, 2019, in the journal Proceedings of the National Academy of Sciences (PNAS).

Geiger is the study's corresponding author; his Northwestern team conducted the experiments. Co-author Thomas Miller, professor of chemistry at Caltech, led a team that conducted atomistic simulations to study the device's behavior at the atomic level.

The new method produces voltages and currents comparable to graphene-based devices reported to have efficiencies of around 30 percent -- similar to other approaches under investigation (carbon nanotubes and graphene) but with a single-step fabrication from earth-abundant elements instead of multistep fabrication. This simplicity allows for scalability, rapid implementation, and low cost. Northwestern has filed for a provisional patent.

Of the metals studied, the researchers found that iron, nickel, and vanadium worked best. They tested a pure rust sample as a control experiment; it did not produce a current.

The mechanism behind the electricity generation is complex, involving ion adsorption and desorption, but it essentially works like this: The ions present in the rainwater/saltwater attract electrons in the metal beneath the oxide layer; as the water flows, so do those ions, and through that attractive force, they drag the electrons in the metal along with them, generating an electrical current.

"There are interesting prospects for a variety of energy and sustainability applications, but the real value is the new mechanism of oxide-metal electron transfer," Geiger said. "The underlying mechanism appears to involve various oxidation states."

The team used a process called physical vapor deposition (PVD), which turns normally solid materials into a vapor that condenses on a desired surface. PVD allowed them to deposit onto glass metal layers only 10 to 20 nanometers thick. An oxide layer then forms spontaneously in air. It grows to a thickness of 2 nanometers and then stops growing.

"Thicker films of metal don't succeed -- it's a nano-confinement effect," Geiger said. "We have discovered the sweet spot."

When tested, the devices generated several tens of millivolts and several microamps per centimeter squared.

"For perspective, plates having an area of 10 square meters each would generate a few kilowatts per hour -- enough for a standard U.S. home," Miller said. "Of course, less demanding applications, including low-power devices in remote locations, are more promising in the near term."

The study's other co-authors are Mavis D. Boamah, Emilie H. Lozier, Paul E. Ohno, and Catherine E. Walker of Northwestern and Jeongmin Kim of Caltech.

Source: Northwestern University

Published August 2019

Rate this article

[Researchers produce electricity by flowing water over extremely thin layers of metal]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2019 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy